生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 210-221.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0473

• 研究报告 • 上一篇    下一篇

油莎豆苹果酸酶(ME)全基因组鉴定及CeNAD-ME2功能分析

李粘前1(), 李琛1, 李淑婷1, 马菊花1, 景海青1, 孙岩1, 周雅莉1, 薛金爱1,2(), 李润植1,2()   

  1. 1.山西农业大学农学院,太谷 030801
    2.山西省特用作物遗传与代谢工程研究中心,太谷 030801
  • 收稿日期:2025-05-08 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 薛金爱,女,博士,教授,研究方向 :植物分子遗传与基因工程;E-mail: 306214803@qq.com
    李润植,男,博士,教授,研究方向 :植物分子遗传与基因工程;E-mail: rli2001@126.com
  • 作者简介:李粘前,男,硕士研究生,研究方向 :作物遗传育种;E-mail: lizhanqian2022@163.com
  • 基金资助:
    国家自然科学基金项目(31401430);山西省基础研究计划(202103021224170);山西省高等学校科学研究优秀成果培育项目(J242042025);山西农业大学生物育种工程项目(YZGC101);山西农业大学其他纵向科研项目(2024QT043)

Genome-wide Identification of the ME Family in Cyperus esculentusis and Functional Analysis of CeNAD-ME2

LI Zhan-qian1(), LI Chen1, LI Shu-ting1, MA Ju-hua1, JING Hai-qing1, SUN Yan1, ZHOU Ya-li1, XUE Jin-ai1,2(), LI Run-zhi1,2()   

  1. 1.College of Agriculture, Shanxi Agricultural University, Taigu 030801
    2.Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Taigu 030801
  • Received:2025-05-08 Published:2025-10-26 Online:2025-10-28

摘要:

目的 系统分析油莎豆苹果酸酶(malic enzyme, ME)基因家族成员、挖掘参与油莎豆块茎油脂合成的ME,为全面解析油莎豆块茎富油机制和培育营养器官富油的作物新种质提供科学参考。 方法 应用组学工具全基因组鉴定油莎豆CeME基因家族成员、分析CeME蛋白理化特性;运用实时荧光定量PCR(RT-qPCR)检测CeME基因在块茎不同发育时期的表达谱;构建靶标CeME表达载体,对酵母(Saccharomyces cerevisiae)和烟草(Nicotiana tabacum)进行遗传转化;检测转化体的ME酶活性和油脂代谢。 结果 从油莎豆基因组中共鉴定到6个CeMEs基因家族成员,分布于6条染色体,其中4个NADP类型(CeNADP-ME1-CeNADP-ME4)和2个NAD类型(CeNAD-ME1-CeNAD-ME2)。CeNADP-ME1具有19个内含子,其余5个CeME基因均含有18个内含子。CeME基因启动子含有生长发育、激素和逆境响应等多种顺式作用元件。6个CeME蛋白均具有典型的ME酶蛋白结构域和12个保守基序。RT-qPCR分析显示,CeME基因在油莎豆块茎油脂积累关键时期(播种后80‒120 d)表达上调,其中,NAD-ME类型的CeNAD-ME2表达量最高。CeNAD-ME2编码的酶蛋白定位于线粒体。过表达CeNAD-ME2酵母细胞总脂和棕榈油酸(C16:1)分别比野生型酵母提高5.6%和5%。与野生型烟草相比,转CeNAD-ME2株系ME活性增加1.5‒4倍,烟叶总脂和油酸(C18:1)含量分别提高5.2%和5.6%,而可溶性糖和淀粉含量分别下降2%和5%。 结论 从油莎豆基因组鉴定到6个CeME成员,CeNAD-ME2参与块茎油脂合成。异源表达CeNAD-ME2可驱动碳源更多地流向油脂合成途径,显著提高宿主总脂和单不饱和脂肪酸含量。

关键词: 油莎豆, 苹果酸酶, 全基因组鉴定, 油脂生物合成, 酵母和烟草遗传转化

Abstract:

Objective The systematic analysis of the members of the ME gene family in the yellow nutsedge (Cyperus esculentus) and the exploration of ME involved in the oil synthesis of the yellow nutsedge tuber provide a scientific reference for the comprehensive understanding of the oil-rich mechanism of the yellow nutsedge and the cultivation of new crop germplasm with oil-rich nutritional organs. Method Omics tools were employed to identify CeME gene family members and analyze their physicochemical properties. Quantitative PCR (RT-qPCR) was used to detect CeME expression patterns during key tuber developmental stages. Target CeME genes were heterologously expressed in Saccharomyces cerevisiae and Nicotiana tabacum. ME enzyme activity, lipid profiles, and metabolic shifts were analyzed in the transgenic lines. Result Six CeME genes were identified, and distributed across six chromosomes, including four NADP-dependent (CeNADP-ME1-CeNADP-ME4) and two NAD-dependent (CeNAD-ME1-CeNAD-ME2) isoforms. All CeMEs harbored 18-19 introns, with CeNADP-ME1 containing 19 introns. Promoter regions of CeMEs contained multiple cis-acting elements linked to development, hormones, and stress responses. All CeME proteins possessed canonical ME domains and twelve conserved motifs. CeMEs were upregulated during the tuber lipid accumulation phase (80-120 d after sowing), with CeNAD-ME2 exhibiting the highest expression. CeNAD-ME2 was localized to mitochondria. The overexpression of CeNAD-ME2 increased total lipids by 5.6% and palmitoleic acid (C16:1) by 28% compared to the wild-type. Transgenic tobacco lines showed 1.5‒4 fold higher ME activity, with total lipids and oleic acid (C18:1) content elevated by 5.2% and 5.6%, respectively, while soluble sugars and starch decreased by 2% and 5%. Conclusion Six CeME genes are identified in yellow nutsedge, with CeNAD-ME2 playing a pivotal role in tuber lipid biosynthesis. Heterologous expression of CeNAD-ME2 redirects carbon flux toward lipid synthesis, significantly enhancing total lipid and monounsaturated fatty acid content in hosts. These findings provide a foundation for elucidating lipid accumulation mechanisms in yellow nutsedge and engineering oil-enriched crops.

Key words: Cyperus esculentusis L, malic enzyme, genome identification, fatty acid synthesis, genetic transformation of yeast and tobacco