生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 54-63.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0551
高博闻1,2(
), 丁顺华1,2, 陈小军1,2, 温晓刚1,2, 田利金1,2,3, 卢庆陶1,2,3(
)
收稿日期:2025-05-30
出版日期:2025-10-26
发布日期:2025-10-28
通讯作者:
卢庆陶,男,博士,副研究员,研究方向 :光合作用环境适应调控机制;E-mail: lu_qingtao@ibcas.ac.cn作者简介:高博闻,男,硕士研究生,研究方向 :光合作用环境适应分子机理;E-mail: dfsybob@126.com
基金资助:
GAO Bo-wen1,2(
), DING Shun-hua1,2, CHEN Xiao-jun1,2, WEN Xiao-gang1,2, TIAN Li-jin1,2,3, LU Qing-tao1,2,3(
)
Received:2025-05-30
Published:2025-10-26
Online:2025-10-28
摘要:
光合作用是地球上最重要的生物化学反应,是植物将光能转化为化学能的关键过程,也是作物产量形成的基础。在全球人口持续增长、耕地面积有限、气候变化加剧的背景下,提高光合作用的效率对于提高农业生产效率具有十分重要的意义。近年来,随着分子生物学、生物化学和合成生物学等学科的快速发展,科研人员在提高光合效率方面取得了显著进展,发现了多种有效的策略和方法。首先,通过调控环境因子来提高光合效率是最直接且有效的方法之一,如适度增加二氧化碳(CO2)浓度和优化光照强度等;其次,可以利用分子遗传学等手段培育高光效作物,如可以通过改造Rubisco酶提高植物对CO2的亲和力来提升植物的农业生产效率;近年来也有研究发现,通过提高植物体内质体醌、质体蓝素等电子载体的含量可以优化电子传递效率,从而增强光合作用并提高植物对外界胁迫的响应能力;此外,还可以通过合成生物学手段改造光合途径和结构来优化植物的光合作用过程从而实现农业生产效率的提高,目前这一方向的热点技术是将C4途径通过基因重组等手段导入C3植物中。因此,本文综述了通过提高植物光合效率促进农业生产效率的多种策略。总的来说,提高农业生产效率需要多学科交叉融合,通过不断探索和创新,有望在未来实现光合效率的突破性提升,为全球粮食安全提供有力保障。
高博闻, 丁顺华, 陈小军, 温晓刚, 田利金, 卢庆陶. 优化光合作用提高农业生产效率的策略[J]. 生物技术通报, 2025, 41(10): 54-63.
GAO Bo-wen, DING Shun-hua, CHEN Xiao-jun, WEN Xiao-gang, TIAN Li-jin, LU Qing-tao. Strategies for Optimizing Photosynthesis to Enhance Agricultural Production Efficiency[J]. Biotechnology Bulletin, 2025, 41(10): 54-63.
图3 质体醌在植物体内的功能PTOX,质体末端氧化酶;NDH,NADPH脱氢酶复合体;Carotenoid,类胡萝卜素;PGR5,质子梯度调节蛋白;PGRL1,pgr5类似光合表型1蛋白。深绿色六边形代表PQ,青色的箭头代表光合作用线性电子传递过程,蓝色的箭头代表环式电子传递过程,浅绿色的箭头代表叶绿体呼吸,橙色的箭头代表参与类胡萝卜素合成过程
Fig. 3 Functions of plastoquinone in plantsPTOX, plastid terminal oxidase; NDH, NADPH dehydrogenase complex; PGR5, proton gradient regulation 5; PGRL1, pgr5-like photosynthetic phenotype 1 protein. The dark green hexagon indicates PQ, the cyan arrow indicates the linear electron transport process of photosynthesis, the blue arrow indicates the cyclic electron transport process, the light green arrow indicates chloroplast respiration, and the orange arrow indicates the process involved in carotenoid synthesis
| [1] | 唐任伍, 杨雨杉. 中国共产党三个历史决议中的民生思想 [J]. 开放导报, 2022(5): 72-81. |
| Tang RW, Yang YS. The idea of people’s livelihood in three historical resolutions of the Chinese communist party [J]. China Open J, 2022(5): 72-81. | |
| [2] | 张居中, 陈昌富, 杨玉璋. 中国农业起源与早期发展的思考 [J]. 中国国家博物馆馆刊, 2014(1): 6-16. |
| Zhang JZ, Chen CF, Yang YZ. Origins and early development of agriculture in China [J]. J Natl Mus China, 2014(1): 6-16. | |
| [3] | 王在德, 陈庆辉. 再论中国农业起源与传播 [J]. 农业考古, 1995(3): 25-32. |
| Wang ZD, Chen QH. Re-discussion on the origin and dissemination of agriculture in China [J]. Agric Archaeol, 1995(3): 25-32. | |
| [4] | 刘扶桑, 宋青峰, 于桂朝, 等. 光合作用系统模型与作物高光效改良 [J]. 生命科学, 2024, 36(9): 1123-1140. |
| Liu FS, Song QF, Yu GC, et al. Photosynthetic system model and improvement of crop photosynthetic efficiency [J]. Chin Bull Life Sci, 2024, 36(9): 1123-1140. | |
| [5] | 李亚东, 许晓凯, 李唯, 等. 荧光碳点调控植物光合作用研究进展 [J]. 发光学报, 2021, 42(8): 1172. |
| Li YD, Xu XK, Li W, et al. Progress of carbon dots regulating plant photosynthesis [J]. Chin J Lumin, 2021, 42(8): 1172. | |
| [6] | 盛阳阳, 徐秀美, 张巧红, 等. 光合作用碳同化的合成生物学研究进展 [J]. 合成生物学, 2022, 3(5): 870-883. |
| Sheng YY, Xu XM, Zhang QH, et al. Advances in synthetic biology for photosynthetic carbon assimilation [J]. Synth Biol J, 2022, 3(5): 870-883. | |
| [7] | 张智胜, 朱国辉, 彭新湘. 优化碳同化实现作物高光效研究进展 [J]. 华南农业大学学报, 2022, 43(6): 69-77. |
| Zhang ZS, Zhu GH, Peng XX. Advances in improvement of crop photosynthetic efficiency by optimizing the photosynthetic carbon assimilation [J]. J South China Agric Univ, 2022, 43(6): 69-77. | |
| [8] | Pan XW, Cao DF, Xie F, et al. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase [J]. Nat Commun, 2020, 11(1): 610. |
| [9] | Huokko T, Ni T, Dykes GF, et al. Probing the biogenesis pathway and dynamics of thylakoid membranes [J]. Nat Commun, 2021, 12(1): 3475. |
| [10] | Lu JZ, Wang ZQ, Yang XL, et al. Cyclic electron flow protects photosystem I donor side under low night temperature in tomato [J]. Environ Exp Bot, 2020, 177: 104151. |
| [11] | Han LJ, Fan DY, Wang XP, et al. The protective role of non-photochemical quenching in PSII photo-susceptibility: a case study in the field [J]. Plant Cell Physiol, 2023, 64(1): 43-54. |
| [12] | Jin YJ, Chen S, Fan XJ, et al. Diuron treatment reveals the different roles of two cyclic electron transfer pathways in photosystem II in Arabidopsis thaliana [J]. Pestic Biochem Physiol, 2017, 137: 15-20. |
| [13] | 米华玲, 朱新广. 光合电子传递及其改善 [J]. 生命科学, 2024, 36(9): 1168-1174. |
| Mi HL, Zhu XG. Photosynthetic electron transports and their improvements [J]. Chin Bull Life Sci, 2024, 36(9): 1168-1174. | |
| [14] | Johnson MP. Photosynthesis [J]. Essays Biochem, 2016, 60(3): 255-273. |
| [15] | Eberhard S, Finazzi G, Wollman FA. The dynamics of photosynthesis [J]. Annu Rev Genet, 2008, 42: 463-515. |
| [16] | Russo DA, Zedler JAZ, Jensen PE. A force awakens: exploiting solar energy beyond photosynthesis [J]. J Exp Bot, 2019, 70(6): 1703-1710. |
| [17] | De Souza AP, Burgess SJ, Doran L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection [J]. Science, 2022, 377(6608): 851-854. |
| [18] | Wang W, Zhang D, Chu CC. OsDREB1C, an integrator for photosynthesis, nitrogen use efficiency, and early flowering [J]. Sci China Life Sci, 2023, 66(1): 191-193. |
| [19] | Wei SB, Li X, Lu ZF, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice [J]. Science, 2022, 377(6604): eabi8455. |
| [20] | Chen JH, Chen ST, He NY, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield [J]. Nat Plants, 2020, 6(5): 570-580. |
| [21] | Tomimatsu H, Tang YH. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions [J]. J Plant Res, 2016, 129(3): 365-377. |
| [22] | 胡海玲. CO2浓度升高影响蓖麻适应盐逆境的生理代谢机制研究 [D]. 哈尔滨: 东北林业大学, 2024. |
| Hu HL. Study on the physiological and metabolic mechanism of the effect of elevated CO2 concentration on the adaptation of castor to salt stress [D]. Harbin: Northeast Forestry University, 2024. | |
| [23] | 刘娜, 侯向阳, 杨荣, 等. 不同羊草对CO2浓度升高的差异性响应研究 [C]//第十二届现代生态学讲座暨林草与环境学科研究生学术论坛摘要集. 晋中, 2023: 13. |
| Liu N, Hou XY, Yang R, et al. Differential responses of different Leymus chinensis to elevated CO2 concentration [C]// Abstracts of the 12th Modern Ecology Lecture and Graduate Academic Forum on Forestry, Grassland and Environment. Jinzhong, 2023: 13. | |
| [24] | 陆琦, 吴春青, 张小龙, 等. 温度、CO2浓度及降水量增加对高山富士苹果品质的影响 [J/OL]. 应用与环境生物学报, 2025. DOI: 10.19675/j.cnki.1006-687x.2024.06025 . |
| Lu Q, Wu CQ, Zhang XL, et al. Effects of increasing temperature, CO2 and precipitation on the quality of alpine Fuji apples-Meta analysis [J/OL]. Chin J Appl Environ Biol, 2025. DOI: 10.19675/j.cnki.1006-687x.2024.06025 . | |
| [25] | 赵婧, 曹琰梅, 柯浩楠, 等. 大气CO2浓度和温度升高对不同施氮量粳稻叶绿素荧光特性的影响[J/OL]. 农业环境科学学报, 2025. . |
| Zhao J, Cao YM, Ke HN, et al. Effects of elevated atmospheric CO2 concentration and temperature on chlorophyll fluorescence characteristics of japonica rice with different nitrogen applications [J/OL]. J Agro Environ Sci, 2025. . | |
| [26] | 牛冰洁. CO2浓度升高对大豆共生结瘤的影响及遗传基础解析 [D]. 太谷: 山西农业大学, 2024. |
| Niu BJ. Effect of elevated CO2 concentration on soybean symbiotic nodulation and genetic basis analysis [D]. Taigu: Shanxi Agricultural University, 2024. | |
| [27] | 张璐, 张伟, 陈新平. 气候变化对蔬菜品质的影响及其机制 [J]. 中国生态农业学报: 中英文, 2021, 29(12): 2034-2045. |
| Zhang L, Zhang W, Chen XP. The effects and mechanism of climate change on vegetables quality: a review [J]. Chin J Eco Agric, 2021, 29(12): 2034-2045. | |
| [28] | Gruda N, Bisbis M, Tanny J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies - A review [J]. J Clean Prod, 2019, 225: 481-495. |
| [29] | 杨爱峥, 李志磊, 付强, 等. CO2浓度倍增和土壤盐胁迫对藜麦生理特征及产量的影响 [J]. 农业工程学报, 2021, 37(4): 181-187. |
| Yang AZ, Li ZL, Fu Q, et al. Effects of elevated atmospheric CO2 on physiological characteristics and yield of quinoa to salinity stress [J]. Trans Chin Soc Agric Eng, 2021, 37(4): 181-187. | |
| [30] | 张满怡. CO2浓度升高下玉米水氮利用对渐进干旱的响应研究 [D]. 杨凌: 西北农林科技大学, 2024. |
| Zhang MY. Study on the response of water and nitrogen utilization of maize to gradual drought under the increase of CO2 concentration [D]. Yangling: Northwest A & F University, 2024. | |
| [31] | 宋甜月, 刘伟, 宋红霞. CO2加富条件下胡萝卜光合通路及差异基因表达分析 [J]. 山西农业科学, 2023, 51(5): 478-484. |
| Song TY, Liu W, Song HX. Photosynthetic pathway and differential gene expression analysis of carrot under CO2 enrichment [J]. J Shanxi Agric Sci, 2023, 51(5): 478-484. | |
| [32] | 张其德, 卢从明, 刘丽娜, 等. CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响 [J]. 植物学报, 1997, 39(9): 845-848. |
| Zhang QD, Lu CM, Liu LN, et al. Effects of CO2 concentration doubling on the absorption and allocation of light energy and excitation energy in chloroplasts of Salix babylonica and Eucommia ulmoides [J]. Chin Bull Bot, 1997, 39(9): 845-848. | |
| [33] | 蒋跃林, 张仕定, 张庆国. 大气CO2浓度升高对茶树光合生理特性的影响 [J]. 茶叶科学, 2005, 25(1): 43-48. |
| Jiang YL, Zhang SD, Zhang QG. Effects of elevated atmospheric CO2 concentration on photo-physiological characteristics of tea plant [J]. J Tea Sci, 2005, 25(1): 43-48. | |
| [34] | 圣倩倩, 高顺, 顾舒文, 等. CO2浓度升高对植物生理生化影响的研究进展 [J]. 西部林业科学, 2021, 50(3): 171-176. |
| Sheng QQ, Gao S, Gu SW, et al. Research progress on physiological and biochemical effects of elevated CO2 concentration on plants [J]. J West China For Sci, 2021, 50(3): 171-176. | |
| [35] | 徐明怡, 倪红伟. CO2浓度升高对植物光合作用的影响 [J]. 国土与自然资源研究, 2016(2): 83-86. |
| Xu MY, Ni HW. Response of photosynthesis to elevated atmospheric CO2 [J]. Territ Nat Resour Study, 2016(2): 83-86. | |
| [36] | 刘强, 陈怡平. 近3年来植物对高浓度CO2响应的研究进展 [J]. 地球环境学报, 2011, 2(4): 525-531. |
| Liu Q, Chen YP. Progress of research on responses of plants to elevated CO2 concentration in recent three years [J]. J Earth Environ, 2011, 2(4): 525-531. | |
| [37] | Campbell WJ, Ogren WL. A novel role for light in the activation of ribulosebisphosphate carboxylase/oxygenase [J]. Plant Physiol, 1990, 92(1): 110-115. |
| [38] | 刘梦龙, 魏健, 任姿蓉, 等. 气孔研究进展: 从保卫细胞到光合作用 [J]. 生命科学, 2024, 36(10): 1289-1304. |
| Liu ML, Wei J, Ren ZR, et al. Research progress of stomata: from guard cells to photosynthesis [J]. Chin Bull Life Sci, 2024, 36(10): 1289-1304. | |
| [39] | Zhu MM, Geng SS, Chakravorty D, et al. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism [J]. Plant J, 2020, 101(6): 1331-1348. |
| [40] | Lawson T, Terashima I, Fujita T, et al. Coordination between photosynthesis and stomatal behavior [M]//The Leaf: A Platform for Performing Photosynthesis. Cham: Springer International Publishing, 2018: 141-161. |
| [41] | Li Q, Zhou LY, Chen YN, et al. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid [J]. Plant Cell, 2022, 34(11): 4293-4312. |
| [42] | Aasamaa K, Aphalo PJ. Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance [J]. Environ Exp Bot, 2016, 121: 94-101. |
| [43] | de Barros Dantas LL, Eldridge BM, Dorling J, et al. Circadian regulation of metabolism across photosynthetic organisms [J]. Plant J, 2023, 116(3): 650-668. |
| [44] | Wang F, Han TW, Chen ZJ. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants [J]. Commun Biol, 2024, 7(1): 579. |
| [45] | He YQ, Yu YJ, Wang XL, et al. Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9 [J]. Nat Commun, 2022, 13(1): 5869. |
| [46] | 杨兴洪, 邹琦, 赵世杰. 遮荫和全光下生长的棉花光合作用和叶绿素荧光特征 [J]. 植物生态学报, 2005, 29(1): 8-15. |
| Yang XH, Zou Q, Zhao SJ. Photosynthesis and chlorophyll fluorescence characteristics of cotton grown under shade and full sunlight conditions [J]. Chin J Plant Ecol, 2005, 29(1): 8-15. | |
| [47] | Yang B, Tang J, Yu ZH, et al. Light stress responses and prospects for engineering light stress tolerance in crop plants [J]. J Plant Growth Regul, 2019, 38(4): 1489-1506. |
| [48] | Didaran F, Kordrostami M, Ghasemi-Soloklui AA, et al. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors [J]. J Photochem Photobiol B Biol, 2024, 259: 113004. |
| [49] | 刘学娜. 水光交互对大葱生长及生理代谢的影响 [D]. 泰安: 山东农业大学, 2021. |
| Liu XN. Effects of water-light interaction on growth and physiological metabolism of Welsh onion [D]. Tai’an: Shandong Agricultural University, 2021. | |
| [50] | 吴雨涵, 刘文辉, 刘凯强, 等. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响 [J]. 草业学报, 2022, 31(10): 75-86. |
| Wu YH, Liu WH, Liu KQ, et al. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings [J]. Acta Prataculturae Sin, 2022, 31(10): 75-86. | |
| [51] | 肖璞, 刘虎虎, 王翀, 等. 植物高光效研究进展 [J]. 生物学杂志, 2020, 37(2): 88-91. |
| Xiao P, Liu HH, Wang C, et al. Advances on the high photosynthetic efficiency in plants [J]. J Biol, 2020, 37(2): 88-91. | |
| [52] | 代修茹. 利用多维组学数据解析C4光合途径相关基因转录调控机制 [D]. 泰安: 山东农业大学, 2022. |
| Dai XR. Deciphering the transcriptional regulatory mechanisms of C4 photosynthesis-related genes using multi-omics data [D]. Tai’an: Shandong Agricultural University, 2022. | |
| [53] | Prywes N, Phillips NR, Oltrogge LM, et al. A map of the rubisco biochemical landscape [J]. Nature, 2025, 638(8051): 823-828. |
| [54] | Salesse-Smith CE, Sharwood RE, Busch FA, et al. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize [J]. Nat Plants, 2018, 4(10): 802-810. |
| [55] | Wang XL, Ma XX, Yan G, et al. Gene duplications facilitate C4-CAM compatibility in common purslane [J]. Plant Physiol, 2023, 193(4): 2622-2639. |
| [56] | Eshenour K, Hotto A, Michel EJS, et al. Transgenic expression of Rubisco accumulation factor2 and Rubisco subunits increases photosynthesis and growth in maize [J]. J Exp Bot, 2024, 75(13): 4024-4037. |
| [57] | Wu JH, Chen S, Wang C, et al. Regulatory dynamics of the higher-plant PSI-LHCI super complex during state transitions [J]. Mol Plant, 2023, 16(12): 1937-1950. |
| [58] | Kromdijk J, Głowacka K, Leonelli L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection [J]. Science, 2016, 354(6314): 857-861. |
| [59] | Lei ZY, Li XL, Li YZ, et al. Photosynthetic mechanism of cotton under fluctuating light field planted with different densities [J]. Ind Crops Prod, 2025, 228: 120920. |
| [60] | Taniyoshi K, Honda S, Miyamoto A, et al. Genetic diversity of leaf photosynthesis under fluctuating light conditions among temperate Japonica rice varieties [J]. J Exp Bot, 2025, 76(10): 2775-2785. |
| [61] | 钟孝芬, 李波娣, 李敏姬, 等. 光呼吸研究进展 [J]. 热带亚热带植物学报, 2022, 30(6): 782-790. |
| Zhong XF, Li BD, Li MJ, et al. Research advances in photorespiration [J]. J Trop Subtrop Bot, 2022, 30(6): 782-790. | |
| [62] | 朱国辉, 张智胜, 彭新湘. 光呼吸演化、调控与遗传改良 [J]. 生命科学, 2024, 36(10): 1226-1239. |
| Zhu GH, Zhang ZS, Peng XX. Photorespiration evolution, regulation, and genetic improvement [J]. Chin Bull Life Sci, 2024, 36(10): 1226-1239. | |
| [63] | 杨小兰, 金龙, 张峰玮. 植物光呼吸调控研究进展 [J]. 河北农机, 2024(21): 127-129. |
| Yang XL, Jin L, Zhang FW. Research progress of plant photorespiration regulation [J]. Hebei Agric Mach, 2024(21): 127-129. | |
| [64] | Smith EN, van Aalst M, Weber APM, et al. Alternatives to photorespiration: a system-level analysis reveals mechanisms of enhanced plant productivity [J]. Sci Adv, 2025, 11(13): eadt9287. |
| [65] | Shen BR, Wang LM, Lin XL, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice [J]. Mol Plant, 2019, 12(2): 199-214. |
| [66] | Wang LM, Shen BR, Li BD, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice [J]. Mol Plant, 2020, 13(12): 1802-1815. |
| [67] | Xu HW, Wang HH, Zhang YW, et al. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield [J]. Plant Commun, 2023, 4(6): 100641. |
| [68] | Crane FL. Discovery of plastoquinones: a personal perspective [J]. Photosynth Res, 2010, 103(3): 195-209. |
| [69] | Havaux M. Plastoquinone in and beyond photosynthesis [J]. Trends Plant Sci, 2020, 25(12): 1252-1265. |
| [70] | Evron Y, Johnson EA, McCarty RE. Regulation of proton flow and ATP synthesis in chloroplasts [J]. J Bioenerg Biomembr, 2000, 32(5): 501-506. |
| [71] | Krieger-Liszkay A, Shimakawa G. Regulation of the generation of reactive oxygen species during photosynthetic electron transport [J]. Biochem Soc Trans, 2022, 50(2): 1025-1034. |
| [72] | Lawrence JM, Egan RM, Hoefer T, et al. Rewiring photosynthetic electron transport chains for solar energy conversion [J]. Nat Rev Bioeng, 2023, 1(12): 887-905. |
| [73] | Rochaix JD. Regulation of photosynthetic electron transport [J]. Biochim Biophys Acta Bioenerg, 2011, 1807(3): 375-383. |
| [74] | Yadav DK, Kruk J, Sinha RK, et al. Singlet oxygen scavenging activity of plastoquinol in photosystem II of higher plants: electron paramagnetic resonance spin-trapping study [J]. Biochim Biophys Acta, 2010, 1797(11): 1807-1811. |
| [75] | Liu MM, Lu SF. Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering [J]. Front Plant Sci, 2016, 7: 1898. |
| [76] | Hundal T, Forsmark-Andrée P, Ernster L, et al. Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes [J]. Arch Biochem Biophys, 1995, 324(1): 117-122. |
| [77] | Maciejewska U, Polkowska-Kowalczyk L, Swiezewska E, et al. Plastoquinone: possible involvement in plant disease resistance [J]. Acta Biochim Pol, 2002, 49(3): 775-780. |
| [78] | Adamiec M, Drath M, Jackowski G. Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance [J]. Acta Biochim Pol, 2008, 55(1): 161-173. |
| [79] | Chao YH, Kang JM, Zhang TJ, et al. Disruption of the homogentisate solanesyltransferase gene results in albino and dwarf phenotypes and root, trichome and stomata defects in Arabidopsis thaliana [J]. PLoS One, 2014, 9(4): e94031. |
| [80] | Sadre R, Gruber J, Frentzen M. Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis [J]. FEBS Lett, 2006, 580(22): 5357-5362. |
| [81] | Motohashi R, Ito T, Kobayashi M, et al. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant [J]. Plant J, 2003, 34(5): 719-731. |
| [82] | Kovalenko I, Fedorov V, Khruschev S, et al. Plastocyanin and cytochrome f complex structures obtained by NMR, molecular dynamics, and AlphaFold 3 methods compared to cryo-EM data [J]. Int J Mol Sci, 2024, 25(20): 11083. |
| [83] | 贾雁茹, 靳雨璠, 焦元, 等. 植物Phytocyanin蛋白家族研究进展 [J]. 植物科学学报, 2024, 42(5): 644-653. |
| Jia YR, Jin YF, Jiao Y, et al. A review on the research progress of the Phytocyanin (PC) protein family [J]. Plant Sci J, 2024, 42(5): 644-653. | |
| [84] | Okooboh GO, Haferkamp I, Rühle T, et al. Expression of the plastocyanin gene PETE2 in Camelina sativa improves seed yield and salt tolerance [J]. J Plant Physiol, 2023, 290: 154103. |
| [85] | Swift J, Luginbuehl LH, Hua L, et al. Exaptation of ancestral cell-identity networks enables C4 photosynthesis [J]. Nature, 2024, 636(8041): 143-150. |
| [86] | 许大全, 朱新广. 创造“玉米稻”: 禾谷作物高产优质的一个新战略 [J]. 植物生理学报, 2020, 56(7): 1313-1320. |
| Xu DQ, Zhu XG. Creating maize-rice: a new strategy to obtain cereal crop possessing both high yield and superior quality [J]. Plant Physiol J, 2020, 56(7): 1313-1320. | |
| [87] | 马德英, 于长磊, 艾鹏飞. 转C4基因水稻的研究现状及展望 [J]. 分子植物育种, 2017, 15(10): 3997-4002. |
| Ma DY, Yu CL, Ai PF. Progress and perspectives of transgenic rice overexpressing C4 photosynthetic genes [J]. Mol Plant Breed, 2017, 15(10): 3997-4002. | |
| [88] | 刘荣, 齐华. 玉米群体结构研究进展[C]//中国农作制度研究进展2012. 沈阳: 沈阳农业大学. 2012: 394-398 |
| Liu R, Qi H. Research progress on maize population structure [C]//Advances in Chinese Farming Systems Research 2012. Shenyang: Shenyang Agriculture University, 2012: 394-398. | |
| [89] | 孙扬, 陈立超, 石艳云, 等. 作物光合作用合成生物学的策略与展望 [J/OL]. 合成生物学, 2025. . |
| Sun Y, Chen LC, Shi YY, et al. Strategies and prospects of synthetic biology in crop photosynthesis [J/OL]. Synth Biol J, 2025. . | |
| [90] | Lyu MA, Du HL, Yao HY, et al. A dominant role of transcriptional regulation during the evolution of C4 photosynthesis in Flaveria species [J]. Nat Commun, 2025, 16(1): 1643. |
| [91] | Tang QM, Huang YH, Ni XX, et al. Increased α-ketoglutarate links the C3-C4 intermediate state to C4 photosynthesis in the genus Flaveria [J]. Plant Physiol, 2024, 195(1): 291-305. |
| [92] | Chen L, Jia YF, Zhou ZH, et al. Genomic and cis-regulatory basis of a plastic C3-C4 photosynthesis in Eleocharis baldwinii [J]. Adv Sci, 2025, 12(32): e15681. |
| [93] | Liang K, Jin ZY, Zhan XC, et al. Structural insights into the chloroplast protein import in land plants [J]. Cell, 2024, 187(20): 5651-5664.e18. |
| [94] | Jakubiec A, Sarokina A, Choinard S, et al. Replicating minichromosomes as a new tool for plastid genome engineering [J]. Nat Plants, 2021, 7(7): 932-941. |
| [95] | Wang WC, Zhao JJ, Yang BY, et al. Light-driven carbon fixation using photosynthetic organelles in artificial photosynthetic cells [J]. Angew Chem Int Ed, 2025, 64(11): e202421827. |
| [96] | Ren DY, Xie W, Xu QK, et al. LSL1 controls cell death and grain production by stabilizing chloroplast in rice [J]. Sci China Life Sci, 2022, 65(11): 2148-2161. |
| [97] | 林菁华. 作物分子育种的原理、方法及应用前景 [J]. 河南农业, 2013(15): 64. |
| Lin JH. Principle, method and application prospect of crop molecular breeding [J]. Agric Henan, 2013(15): 64. |
| [1] | 程雪, 付颖, 柴晓娇, 王红艳, 邓欣. 谷子LHC基因家族鉴定及非生物胁迫表达分析[J]. 生物技术通报, 2025, 41(8): 102-114. |
| [2] | 王斌, 王玉昆, 肖艳辉. 丁香罗勒(Ocimum gratissimum)叶片响应镉胁迫的比较转录组学分析[J]. 生物技术通报, 2025, 41(3): 255-270. |
| [3] | 范艳飞, 叶露幻, 李雨桐, 王钏跞, 张瑞, 罗建华, 王鹏. 第二十七届中国科协年会学术论文运用小麦杂交株系挖掘环式光合电子传递调控基因并应用于作物高光效改造[J]. 生物技术通报, 2025, 41(10): 72-86. |
| [4] | 李新颖, 孙晶, 吕若彤, 任亚娟, 罗蕾, 艾鹏飞, 王雁伟. PPR蛋白调控叶绿体RNA编辑分子机制研究进展[J]. 生物技术通报, 2025, 41(10): 32-42. |
| [5] | 罗春梅, 李艳君, 陈根云, 曲明南. 第二十七届中国科协年会学术论文作物高遗传力光合性状分析与高光效基因挖掘[J]. 生物技术通报, 2025, 41(10): 6-19. |
| [6] | 李波娣, 李志超, 朱国辉, 彭新湘, 张智胜. 第二十七届中国科协年会学术论文叶绿体中过表达乙醇酸氧化酶对水稻光合作用与生长的影响[J]. 生物技术通报, 2025, 41(10): 87-97. |
| [7] | 陈立超, 杨雪莲, 李文杰, 石艳云, 张立新, 徐秀美. 第二十七届中国科协年会学术论文植物光合作用的光保护机制研究进展[J]. 生物技术通报, 2025, 41(10): 64-71. |
| [8] | 孙晶, 杨韵龙, 刘荣志, 余泓, 路铁刚. 第二十七届中国科协年会学术论文加强高光效基础研究,支撑作物高产育种[J]. 生物技术通报, 2025, 41(10): 1-5. |
| [9] | 琚康辉, 田晓雅, 王立, 陈晶瑜. 细胞编程技术:助力高效细胞工厂的设计[J]. 生物技术通报, 2024, 40(10): 160-171. |
| [10] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
| [11] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
| [12] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
| [13] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
| [14] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
| [15] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||