生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 107-118.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0688
• 研究报告 • 上一篇
刘洁(), 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉(
), 张毅(
)
收稿日期:
2024-07-17
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
石玉,女,博士,副教授,研究方向 :设施蔬菜栽培与生理;E-mail: ayu-shi@163.com作者简介:
刘洁,女,硕士研究生,研究方向 :设施蔬菜栽培与生理;E-mail: 19834544664@163.com
基金资助:
LIU Jie(), WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu(
), ZHANG Yi(
)
Received:
2024-07-17
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 探究SlWRKY41转录因子在番茄响应干旱胁迫中的作用,为进一步丰富番茄抗逆种质资源和选育抗旱品种提供理论依据。 方法 以野生型番茄‘Ailsa Craig’为材料,以其cDNA为模板克隆SlWRKY41基因,构建OE-SlWRKY41转基因番茄株系,对野生型和OE-SlWRKY41转基因番茄株系进行干旱处理,在处理第4、8天时对其进行表型观察和相关生理、生化指标的测定,并进行胁迫相关基因的表达分析。 结果 与野生型植株相比,干旱胁迫8 d后,OE-SlWRKY41转基因植株的叶片卷曲,萎蔫程度较轻,膜脂过氧化水平显著降低;气孔导度和蒸腾速率显著降低,净光合速率显著提高;根系形态指标整体呈现上升趋势,叶片相对含水量、抗氧化酶活性和渗透调节物质(可溶性糖和脯氨酸含量)显著增加,相对电导率显著降低;过表达SlWRKY41植株中的胁迫响应基因(SlSOD、SlPOD和SlP5CS1)显著上调。 结论 SlWRKY41能够响应干旱,过表达SlWRKY41能够提高番茄幼苗对干旱胁迫的耐受性。
刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118.
LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought[J]. Biotechnology Bulletin, 2025, 41(2): 107-118.
引物名称Primer name | 引物序列Primer sequence(5′-3′) |
---|---|
SlActin-F | ACCACTGAGCACAATGTTACCG |
SlActin-R | GTCCTCTTCCAGCCATCCA |
SlWRKY41-F | GGCTTGAAGGTCCATGTGAAGATG |
SlWRKY41-R | ACCCCTGTGTGTTCCTATGAGTAC |
SlSOD-F | AATTCATCATTGTGGCAGCA |
SlSOD-R | GCCCTTAAGGACAGCAACAG |
SlPOD-F | GGTCCAACATGGCAAGTTCT |
SlPOD-R | ACATCTTGCCCTTCCAAATG |
SlP5CS1-F | TGATGGAAGATTAGCACTTGGAA |
SlP5CS1-R | CAACACCTACAGCACCAGAA |
表1 RT-qPCR引物序列
Table 1 Primer sequences for RT-qPCR
引物名称Primer name | 引物序列Primer sequence(5′-3′) |
---|---|
SlActin-F | ACCACTGAGCACAATGTTACCG |
SlActin-R | GTCCTCTTCCAGCCATCCA |
SlWRKY41-F | GGCTTGAAGGTCCATGTGAAGATG |
SlWRKY41-R | ACCCCTGTGTGTTCCTATGAGTAC |
SlSOD-F | AATTCATCATTGTGGCAGCA |
SlSOD-R | GCCCTTAAGGACAGCAACAG |
SlPOD-F | GGTCCAACATGGCAAGTTCT |
SlPOD-R | ACATCTTGCCCTTCCAAATG |
SlP5CS1-F | TGATGGAAGATTAGCACTTGGAA |
SlP5CS1-R | CAACACCTACAGCACCAGAA |
图1 SlWRKY41转基因番茄的遗传转化和转基因番茄PCR和RT-qPCR检测A:制备外植体;B:分化愈伤组织;C:生成抗性芽;D:生根培养;E:T1代SlWRKY41转基因番茄基因组DNA PCR检测。M:DNA maker DL2000;1:阴性对照;2:野生型植株;3-8:SlWRKY41转基因株系;9:质粒对照;F:RT-qPCR 检测T2代转基因番茄植株中WRKY41的表达量,不同小写字母代表不同处理间差异达到显著水平(P<0.05),下同
Fig. 1 Genetic transformation of SlWRKY41-transgenic tomato plants and PCR and RT-qPCR detection of transgenic tomato plantsA: Preparation of exosomes. B: Differentiation of healing tissues. C: Generation of resistant buds. D: Rooting culture. E: SlWRKY41 transgenic tomato genomic DNA PCR assay for the T1 generation. M: DNA maker DL2000; 1: negative control; 2: wild-type plants; 3-8: SlWRKY41 transgenic lines; 9: plasmid control. F: RT-qPCR detection of WRKY41 expression in T2 generation transgenic tomato plants, and the different lowercase letters indicate significant levels of difference among treatments(P<0.05), the same below
图2 干旱胁迫后野生型植株和过表达SlWRKY41植株的表型观察OE-WRKY41从左往右依次为OE-WRKY41-1、OE-WRKY41-2
Fig. 2 Phenotypic observations of wild-type and SlWRKY41-overexpressed plants under drought stressOE-WRKY41 from left to right is OE-WRKY41-1,and OE-1WRKY41-2
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上鲜重Shoot fresh weight/g | 地下鲜重 Root fresh weight/g | 地上干重Shoot dry weight/g | 地下干重 Root dry weight/g | 总干重 Total dry weight/g | 总鲜重 Total fresh weight/g |
---|---|---|---|---|---|---|---|---|
WT | 8.61±0.72b | 3.53±0.17b | 4.30±0.26b | 1.34±0.10b | 0.29±0.07b | 0.07±0.01b | 5.64±0.31b | 0.36±0.07b |
OE-WRKY41-1 | 11.33±0.77a | 4.33±0.32a | 6.28±0.13a | 2.74±0.18a | 0.40±0.03a | 0.13±0.01a | 9.03±0.22a | 0.53±0.03a |
OE-WRKY41-2 | 11.60±0.33a | 4.35±0.29a | 6.66±0.35a | 2.42±0.40a | 0.40±0.04a | 0.13±0.01a | 9.08±0.69a | 0.52±0.05a |
表2 干旱胁迫对过表达SlWRKY41番茄幼苗生物量的影响
Table 2 Effects of drought stress on the biomasses of tomato seedlings overexpressing SlWRKY41
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上鲜重Shoot fresh weight/g | 地下鲜重 Root fresh weight/g | 地上干重Shoot dry weight/g | 地下干重 Root dry weight/g | 总干重 Total dry weight/g | 总鲜重 Total fresh weight/g |
---|---|---|---|---|---|---|---|---|
WT | 8.61±0.72b | 3.53±0.17b | 4.30±0.26b | 1.34±0.10b | 0.29±0.07b | 0.07±0.01b | 5.64±0.31b | 0.36±0.07b |
OE-WRKY41-1 | 11.33±0.77a | 4.33±0.32a | 6.28±0.13a | 2.74±0.18a | 0.40±0.03a | 0.13±0.01a | 9.03±0.22a | 0.53±0.03a |
OE-WRKY41-2 | 11.60±0.33a | 4.35±0.29a | 6.66±0.35a | 2.42±0.40a | 0.40±0.04a | 0.13±0.01a | 9.08±0.69a | 0.52±0.05a |
处理 Treatment | 根长 Root length/cm | 根系表面积 Root surface area/cm2 | 根平均直径 Mean root diameter/mm | 根系体积 Root volume/ cm3 | 根尖数 Root tips | 根分叉数 Root forks | 交叉数 Root crosses |
---|---|---|---|---|---|---|---|
WT | 87.99±6.63b | 13.00±1.09b | 0.23±0.03b | 0.77±0.08b | 1 974.33±222.06b | 6 319.33±382.89b | 1 663.67±228.40b |
OE-WRKY41-1 | 106.08±7.25a | 17.25±1.54a | 0.36±0.04a | 1.68±0.58a | 2 733.67±316.79a | 8 052.33±494.69a | 2 269.67±112.97a |
OE-WRKY41-2 | 106.61±2.60a | 17.83±0.68a | 0.35±0.02a | 1.72±0.41a | 2 704.67±97.57a | 8 347.00±644.94a | 2 250.67±159.14a |
表3 干旱胁迫对过表达SlWRKY41番茄幼苗根系形态指标的影响
Table 3 Effects of drought stress on the root system indexes of tomato seedlings overexpressing SlWRKY41
处理 Treatment | 根长 Root length/cm | 根系表面积 Root surface area/cm2 | 根平均直径 Mean root diameter/mm | 根系体积 Root volume/ cm3 | 根尖数 Root tips | 根分叉数 Root forks | 交叉数 Root crosses |
---|---|---|---|---|---|---|---|
WT | 87.99±6.63b | 13.00±1.09b | 0.23±0.03b | 0.77±0.08b | 1 974.33±222.06b | 6 319.33±382.89b | 1 663.67±228.40b |
OE-WRKY41-1 | 106.08±7.25a | 17.25±1.54a | 0.36±0.04a | 1.68±0.58a | 2 733.67±316.79a | 8 052.33±494.69a | 2 269.67±112.97a |
OE-WRKY41-2 | 106.61±2.60a | 17.83±0.68a | 0.35±0.02a | 1.72±0.41a | 2 704.67±97.57a | 8 347.00±644.94a | 2 250.67±159.14a |
图4 干旱胁迫对过表达SlWRKY41番茄幼苗叶片相对电导率和相对含水量的影响
Fig. 4 Effects of drought stress on the relative electrical conductivity and relative water content in the leaves of tomato seedlings overexpressing SlWRKY41
图5 干旱胁迫对过表达SlWRKY41番茄幼苗叶片丙二醛、活性氧含量及抗氧化酶活的影响
Fig. 5 Effects of drought stress on malondialdehyde, reactive oxygen species content and antioxidant enzyme activities in the leaves of tomato seedlings overexpressing SlWRKY41
图6 干旱胁迫对过表达SlWRKY41番茄幼苗叶片可溶性糖和脯氨酸含量的影响
Fig. 6 Effects of drought stress on soluble sugar content and proline in the leaves of tomato seedlings overexpressing SlWRKY41
图7 干旱胁迫下过表达SlWRKY41番茄幼苗胁迫相关基因的相对表达量变化
Fig. 7 Relative expression variations of stress-related genes in the tomato seedlings overexpressing SlWRKY41 under drought stress
1 | 王丽, 刘洋, 李德全. 植物干旱胁迫信号转导及其调控机制研究进展 [J]. 生物技术通报, 2012, 28(10): 1-7. |
Wang L, Liu Y, Li DQ. Drought stress signal transduction and regulation mechanism in plants [J]. Biotechnol Bull, 2012, 28(10): 1-7. | |
2 | Li QQ, Ye AZ, Wada Y, et al. Climate change leads to an expansion of global drought-sensitive area [J]. J Hydrol, 2024, 632: 130874. |
3 | Wang TT, Sun FB. Socioeconomic exposure to drought under climate warming and globalization: the importance of vegetation-CO2 feedback [J]. Int J Climatol, 2023, 43(12): 5778-5796. |
4 | 陈兰兰, 王丽, 吴亚娟, 等. 植物响应干旱胁迫的分子和微生态机制 [J/OL]. 分子植物育种, 2023, 1-15. . |
Chen LL, Wang L, Wu YJ, et al. Molecular and microecological mechanisms of plant responses to drought stress [J/OL]. Molecular Plant Breeding, 2023, 1-15. . | |
5 | Zia R, Nawaz MS, Siddique MJ, et al. Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation [J]. Microbiol Res, 2021, 242: 126626. |
6 | 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展 [J]. 中国农业科技导报, 2019, 21(2): 19-25. |
Wang KY, Chen FQ, Huang WX. Research advance on drought stress response mechanism in plants [J]. J Agric Sci Technol, 2019, 21(2): 19-25. | |
7 | Zhang PF, Zhang ZR, Xiao ML, et al. Effects of organic mulching on moisture and temperature of soil in greenhouse production of tomato under unheated greenhouse cultivation in the cold zone of China [J]. Food Sci Nutr, 2023, 11(8): 4829-4842. |
8 | Fang YJ, Zheng YQ, Lu W, et al. Roles of miR319-regulated TCPs in plant development and response to abiotic stress [J]. Crop J, 2021, 9(1): 17-28. |
9 | Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors [J]. Trends Plant Sci, 2010, 15(5): 247-258. |
10 | 卢珍红, 原晓龙, 李绅崇, 等. 非洲菊对隐地疫霉侵染响应WRKY转录因子的鉴定及表达分析 [J]. 分子植物育种, 2023, 1-10. |
Lu ZH, Yuan XL, Li SC, et al. Identification and expression analysis of gerbera jamesonii WRKY transcription factors related to phytophthora cryptogea stress [J]. Molecular Plant Breeding, 2023, 1-10. | |
11 | Garneau MG, Tan QM, Tegeder M. Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition [J]. J Exp Bot, 2018, 69(21): 5205-5219. |
12 | Song H, Wang PF, Hou L, et al. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean [J]. Front Plant Sci, 2016, 7: 9. |
13 | Li SL, Khoso MA, Wu J, et al. Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress [J]. Plant Stress, 2024, 12: 100429. |
14 | Li HE, Xu Y, Xiao Y, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata [J]. Planta, 2010, 232(6): 1325-1337. |
15 | Wang F, Chen HW, Li QT, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants [J]. Plant J, 2015, 83(2): 224-236. |
16 | Jiang YJ, Liang G, Yu DQ. Activated expression of WRKY57 confers drought tolerance in Arabidopsis [J]. Mol Plant, 2012, 5(6): 1375-1388. |
17 | Tang LL, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.) [J]. Plant Cell Tissue Organ Cult PCTOC, 2014, 118(1): 77-86. |
18 | Shui DJ, Sun J, Xiong ZL, et al. Comparative identification of WRKY transcription factors and transcriptional response to Ralstonia solanacearum in tomato [J]. Gene, 2024, 912: 148384. |
19 | 魏娟娟, 杨伟, 潘宇, 等. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得 [J]. 西南大学学报: 自然科学版, 2017, 39(1): 46-54. |
Wei JJ, Yang W, Pan Y, et al. Cloning and expression analysis of a WRKY41 gene in tomato and its transfer into a tomato cultivar [J]. J Southwest Univ Nat Sci Ed, 2017, 39(1): 46-54. | |
20 | 陈浩婷, 张玉静, 刘洁, 等. 低磷胁迫下番茄转录因子WRKY6功能分析 [J]. 生物技术通报, 2023, 39(10): 136-147. |
Chen HT, Zhang YJ, Liu J, et al. Functional analysis of WRKY6 gene in tomato under low-phosphorus stress [J]. Biotechnol Bull, 2023, 39(10): 136-147. | |
21 | 梁爽. 钙抑制剂对盐胁迫条件下植物丙二醛含量及营养结构的影响 [D]. 长春: 长春师范大学, 2016. |
Liang S. Effects of calcium inhibitors on malondialdehyde content and nutritional structure of plants under salt stress [D]. Changchun: Changchun Normal University, 2016. | |
22 | 高俊凤. 植物生理学实验指导 [M]. 北京: 高等教育出版社, 2006. |
Gao JF. Experimental guidance for plant physiology [M]. Beijing: Higher Education Press, 2006. | |
23 | Gong HJ, Zhu XY, Chen KM, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought [J]. Plant Sci, 2005, 169(2): 313-321. |
24 | 王云霞, 刘莹, 付雨辰, 等. 干旱胁迫对连翘幼苗非结构性碳分配和水力特性的影响 [J]. 生态学报, 2024, 44(11): 4698-4707. |
Wang YX, Liu Y, Fu YC, et al. Effects of drought stress on unstructured carbon allocation and hydraulic characteristics of Forsythia suspense seedlings [J]. Acta Ecol Sin, 2024, 44(11): 4698-4707. | |
25 | 姜玉, 张苗, 汤静, 等. 冷激结合水杨酸处理对黄瓜果实冷害及能量和脯氨酸代谢的影响 [J]. 核农学报, 2021, 35(1): 128-137. |
Jiang Y, Zhang M, Tang J, et al. Effects of cold shock combined with salicylic acid treatment on chilling injury, energy and proline metabolism of postharvest cucumber fruit [J]. J Nucl Agric Sci, 2021, 35(1): 128-137. | |
26 | Razifard H, Ramos A, Della Valle AL, et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America [J]. Mol Biol Evol, 2020, 37(4): 1118-1132. |
27 | 范舒雅. 外源硒提高番茄干旱和盐胁迫抗性的生理机制研究 [D]. 杨凌:西北农林科技大学, 2023. |
Fan SY. Study on physiological mechanisms for exogenous selenium-mediated drought and salt tolerance in tomato[D]. Yangling: Northwest A&F University, 2023. | |
28 | 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应 [J]. 生态学报, 2013, 33(17): 5169-5176. |
Ding H, Zhang ZM, Dai LX, et al. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress [J]. Acta Ecol Sin, 2013, 33(17): 5169-5176. | |
29 | Jung H, Chung PJ, Park SH, et al. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance [J]. Plant Biotechnol J, 2017, 15(10): 1295-1308. |
30 | 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系 [J]. 生态学报, 2010, 30(19): 5140-5150. |
Li WR, Zhang SQ, Ding SY, et al. Root morphological variation and water use in alfalfa under drought stress [J]. Acta Ecol Sin, 2010, 30(19): 5140-5150. | |
31 | 刘波, 池明, 曹梦琦, 等. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响 [J]. 作物学报, 2024, 50(9): 2237-2247. |
Liu B, Chi M, Cao MQ, et al. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agron Sin, 2024, 50(9): 2237-2247. | |
32 | Song JW, Xin L, Gao FK, et al. Effects of foliar selenium application on oxidative damage and photosynthetic properties of greenhouse tomato under drought stress [J]. Plants (Basel), 2024, 13(2): 302. |
33 | Luan YT, Chen ZJ, Fang ZW, et al. PoWRKY71 is involved in Paeonia ostii resistance to drought stress by directly regulating light-harvesting chlorophyll a/b-binding 151 gene [J]. Hortic Res, 2023, 10(11): uhad194. |
34 | 吴一鸣, 崔会婷, 张昆, 等. 两种白颖苔草对梯度NaCl胁迫的生理生化响应及综合评价 [J]. 草地学报, 2024, 32(3): 736-745. |
Wu YM, Cui HT, Zhang K, et al. Physiological, biochemical responses and comprehensive evaluation of two Carex rigescens varieties in response to gradient NaCl stress [J]. Acta Agrestia Sin, 2024, 32(3): 736-745. | |
35 | 徐子涵, 刘倩, 苗大鹏, 等. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响 [J]. 生物技术通报, 2021, 37(5): 28-37. |
Xu ZH, Liu Q, Miao DP, et al. Impacts of Cymbidium goeringii's miR396 overexpression on the leaf growth, photosynthesis and chlorophyll fluorescence in Arabidopsis thaliana [J]. Biotechnol Bull, 2021, 37(5): 28-37. | |
36 | 高琦, 刘亚敏, 刘玉民, 等. 外源调节物质对干旱胁迫红椿苗木形态及光合生理的影响 [J]. 西北农林科技大学学报: 自然科学版, 2024, 52(7): 53-63. |
Gao Q, Liu YM, Liu YM, et al. Effects of exogenous substances on morphology and photosynthetic physiology of To ona Ciliata seedlings under drought stress [J]. J Northwest A F Univ Nat Sci Ed, 2024, 52(7): 53-63. | |
37 | Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002, 7(9): 405-410. |
38 | 李格, 孟小庆, 蔡敬, 等. 活性氧在植物非生物胁迫响应中功能的研究进展 [J]. 植物生理学报, 2018, 54(6): 951-959. |
Li G, Meng XQ, Cai J, et al. Advances in the function of reactive oxygen species in plant responses to abiotic stresses [J]. Plant Physiol J, 2018, 54(6): 951-959. | |
39 | Ran C, Gulaqa A, Zhu J, et al. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline-sodic paddy field condition [J]. J Plant Growth Regul, 2020, 39(1): 370-377. |
40 | 刘佳, 王少鹏, 史昆, 等. 紫花苜蓿MsMYB58基因克隆及抗旱功能鉴定 [J]. 草地学报, 2023, 31(12): 3608-3616. |
Liu J, Wang SP, Shi K, et al. Cloning and function identification of MsMYB58 in alfalfa under drought stress [J]. Acta Agrestia Sin, 2023, 31(12): 3608-3616. | |
41 | 张玲, 麻冬梅, 刘晓霞, 等. 根灌外源褪黑素对干旱胁迫下紫花苜蓿生理特性的影响研究 [J]. 草地学报, 2024, 32(1): 198-206. |
Zhang L, Ma DM, Liu XX, et al. The effects of exogenous melatonin on seedling physiological characteristics of alfalfa under drought stress [J]. Acta Agrestia Sin, 2024, 32(1): 198-206. | |
42 | Zhao J, Zhang XM, Guo RR, et al. Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance [J]. Plant Cell Tissue Organ Cult, 2018, 132(2): 359-370. |
43 | 叶博予, 李雪芹, 池艺, 等. 高温胁迫对山核桃光合作用和抗氧化系统的影响 [J]. 分子植物育种, 2024, 22(12): 4018-4024. |
Ye BY, Li XQ, Chi Y, et al. Effects of high temperature stress on photosynthesis and antioxidant system of Carya cathayensis [J]. Mol Plant Breed, 2024, 22(12): 4018-4024. | |
44 | 杜清洁, 周璐瑶, 杨思震, 等. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性 [J]. 生物技术通报, 2023, 39(2): 172-182. |
Du QJ, Zhou LY, Yang SZ, et al. Overexpression of CaCP1 enhances salt stress sensibility in transgenic tobacco [J]. Biotechnol Bull, 2023, 39(2): 172-182. | |
45 | 丁凯鑫, 王立春, 田国奎, 等. 外源烯效唑对干旱胁迫下马铃薯叶片抗氧化能力及渗透调节的影响 [J]. 核农学报, 2024, 38(1): 169-178. |
Ding KX, Wang LC, Tian GK, et al. Effect of exogenous uniconazole on antioxidant capacity and osmotic adjustment of potato leaves under drought stress [J]. J Nucl Agric Sci, 2024, 38(1): 169-178. | |
46 | Zhu D, Che YM, Xiao PL, et al. Functional analysis of a grape WRKY30 gene in drought resistance [J]. Plant Cell Tissue Organ Cult, 2018, 132(3): 449-459. |
47 | 陈光, 李佳, 杜瑞英, 等. pOsHAK1: OsFLN2提高水稻的糖代谢水平和抗旱性 [J]. 生物技术通报, 2022, 38(8): 92-100. |
Chen G, Li J, Du RY, et al. pOsHAK1: OsFLN2 expression enhances the drought tolerance by altering sugar metabolism in rice [J]. Biotechnol Bull, 2022, 38(8): 92-100. | |
48 | 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展 [J]. 生态学报, 2023, 43(24): 10042-10053. |
Liu Y, Zhang LN, Liu XH, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress [J]. Acta Ecol Sin, 2023, 43(24): 10042-10053. | |
49 | Ahammed GJ, Li X, Wan HJ, et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato [J]. Sci Hortic, 2020, 270: 109444. |
[1] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[2] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
[3] | 沈川, 李夏, 覃剑锋, 段龙飞, 刘佳. 基于软腐病菌诱导的魔芋酵母双杂交文库筛选WRKY72互作蛋白[J]. 生物技术通报, 2025, 41(1): 85-94. |
[4] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[5] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[6] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[7] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
[8] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[9] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
[10] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[11] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[12] | 杜仲阳, 杨泽, 梁梦静, 刘义珍, 崔红利, 史达明, 薛金爱, 孙岩, 张春辉, 季春丽, 李润植. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应[J]. 生物技术通报, 2024, 40(7): 183-196. |
[13] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[14] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[15] | 王秋月, 段鹏亮, 李海笑, 刘宁, 曹志艳, 董金皋. 玉米大斑病菌cDNA文库的构建及转录因子StMR1互作蛋白的筛选[J]. 生物技术通报, 2024, 40(6): 281-289. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 747
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||