生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 317-326.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1242
• 研究报告 • 上一篇
收稿日期:2024-12-23
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
代金霞,女,博士,教授,研究方向 :微生物资源开发与利用;E-mail: daijx05@163.com作者简介:张钧杰,男,硕士研究生,研究方向 :微生物资源开发与利用;E-mail: 2293311278@qq.com
基金资助:
ZHANG Jun-jie(
), LIU Shuang, HU Ming-zhu, SHI Xue-rui, DAI Jin-xia(
)
Received:2024-12-23
Published:2025-06-26
Online:2025-06-30
摘要:
目的 对荒漠灌丛根际土壤固氮微生物多样性、抗逆性和促生特性进行研究,为挖掘荒漠微生物资源提供基础。 方法 采用分离培养方法及固氮酶基因nifH的PCR扩增,从4种荒漠灌丛根际土壤中分离筛选固氮微生物,通过菌落形态观察、菌株生理生化特征测定及16S rRNA基因序列分析,对固氮菌株进行鉴定;通过NaCl、NaOH和PEG6000胁迫检测菌株的盐碱耐受性和抗旱性,通过比色法测定菌株溶磷、产生IAA、铁载体和ACC脱氨酶等促生潜能。通过苜蓿盆栽接种实验验证菌株的促生效果。 结果 从4种灌丛根际土壤中共筛选获得固氮微生物61株,菌株多为革兰氏阴性,H2O2酶反应阳性;16S rRNA序列分析结果表明菌株隶属于38个属,其中假单胞菌属(Pseudomonas)、芽胞杆菌属(Bacillus)、固氮菌属(Azotobacter)和剑菌属(Ensifer)分离频率较高,柠条根际固氮微生物多样性最为丰富。所有菌株在pH 10的条件下可正常生长,大多数菌株可耐受5%的NaCl和15%的PEG6000,表现出良好的抗逆性。菌株的促生特性存在差异,17株具有溶磷能力,发酵液中有效磷增量最高达到135.84 mg/L;15株菌能够产铁载体;8株具有产ACC脱氨酶活性,酶活最高为10.63 U/mg;19株具有分泌IAA的能力,IAA产量在3.41-56.93 mg/L之间,有6个菌株同时具备3种以上促生潜能,其中SDQ-1和MC-20菌株综合性能良好。盆栽接种实验表明,接种处理能显著促进苜蓿幼苗生长,复合菌剂组F促生效果最显著,与未接种对照CK相比,幼苗株高、鲜重、根长和根面积分别显著提高了55.88%、147.53%、292.65%和306.38%。 结论 宁夏荒漠灌丛根际土壤中固氮微生物多样性极其丰富,多数菌株具有良好的抗逆性和多种促生潜能,具有进一步开发利用的价值。
张钧杰, 刘爽, 胡明珠, 石雪瑞, 代金霞. 荒漠植物根际土壤固氮微生物的筛选及其抗逆促生特性[J]. 生物技术通报, 2025, 41(6): 317-326.
ZHANG Jun-jie, LIU Shuang, HU Ming-zhu, SHI Xue-rui, DAI Jin-xia. Screening of Nitrogen-fixing Microorganisms in Rhizosphere Soil of Desert Plants and Their Stress-resistant and Growth-promoting Characteristics[J]. Biotechnology Bulletin, 2025, 41(6): 317-326.
土壤样品 Soil sample | 联合固氮培养基 Combined nitrogen-fixing culture medium | 固氮类芽胞杆菌培养基 Nitrogen-fixing Bacillus culture medium | 无氮培养基 Nitrogen-free culture medium | nifH基因阳性菌株 nifH gene-positive strain |
|---|---|---|---|---|
| NT | 23 | 12 | 9 | 31 |
| SDQ | 12 | 15 | 9 | 13 |
| MTC | 12 | 9 | 12 | 13 |
| MC | 11 | 9 | 11 | 4 |
表1 固氮菌株筛选结果
Table 1 Screening results of nitrogen-fixing bacterial strains
土壤样品 Soil sample | 联合固氮培养基 Combined nitrogen-fixing culture medium | 固氮类芽胞杆菌培养基 Nitrogen-fixing Bacillus culture medium | 无氮培养基 Nitrogen-free culture medium | nifH基因阳性菌株 nifH gene-positive strain |
|---|---|---|---|---|
| NT | 23 | 12 | 9 | 31 |
| SDQ | 12 | 15 | 9 | 13 |
| MTC | 12 | 9 | 12 | 13 |
| MC | 11 | 9 | 11 | 4 |
图1 部分固氮菌株的菌落形态A:联合固氮培养基;B:固氮类芽胞杆菌培养基;C:无氮培养基
Fig. 1 Colony morphology of some nitrogen-fixing strainsA: Combined nitrogen-fixing culture medium. B: Nitrogen-fixing Bacillus culture medium. C: Nitrogen-free culture medium
培养条件 Cultivation conditions | 正常生长菌数 Normal growth count | |
|---|---|---|
| NaCl | 3% | 61 |
| 5% | 52 | |
| 7% | 35 | |
| 9% | 13 | |
| PEG6000 | 15% | 52 |
| 25% | 18 | |
| 35% | 13 | |
| pH | 9 | 61 |
| 10 | 61 | |
| 11 | 33 | |
| 12 | 4 | |
表2 菌株抗逆性筛选结果
Table2 Screening results of strain stress resistance
培养条件 Cultivation conditions | 正常生长菌数 Normal growth count | |
|---|---|---|
| NaCl | 3% | 61 |
| 5% | 52 | |
| 7% | 35 | |
| 9% | 13 | |
| PEG6000 | 15% | 52 |
| 25% | 18 | |
| 35% | 13 | |
| pH | 9 | 61 |
| 10 | 61 | |
| 11 | 33 | |
| 12 | 4 | |
图3 部分菌株的促生活性图中小写字母表示不同菌株之间促生能力差异达到显著水平(P<0.05);实验均设有3个重复,下同
Fig. 3 Growth-promoting activities of some strainsThe lowercase letters in the figure indicate significant difference in growth-promoting ability among different strains (P<0.05).There are 3 replicates in each experiment, the same below
图4 不同处理的盆栽苜蓿长势图CK:未接种对照组;D1、D2:分别为SDQ-1和MC-20单一菌剂接种组;F:复合接种组
Fig. 4 Growth of potted alfalfa under different treatmentsCK: The uninoculated control group; D1 and D2: single inoculation groups of SDQ-1and MC-20, respectively; F: the compound inoculation group
图5 不同处理苜蓿根系相关指标CK:未接种对照组根系扫描数据;D1、D2:分别为SDQ-1和MC-20单一菌剂接种组根系扫描数据;F:复合接种组根系扫描数据。下同
Fig. 5 Root-related indexes of alfalfa under different treatmentsCK: Control group root scanning data; D1, D2: the root scan data for the SDQ-1 and MC-20 single inoculant groups were obtained; F: root scanning data of the composite inoculation group. the same below
| 1 | Naqqash T, Imran A, Hameed S, et al. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato [J]. Sci Rep, 2020, 10(1): 12893. |
| 2 | 韩风毅, 张贻荣, 王思荣, 等. 亚热带典型杉木人工林根际土壤固氮菌丰度和群落结构 [J]. 应用生态学报, 2024, 35(6): 1681-1688. |
| Han FY, Zhang YR, Wang SR, et al. Abundance and community structure of nitrogen-fixing bacteria in rhizosphere soil of typical Chinese fir plantation in subtropical zone [J]. China Ind Econ, 2024, 35(6): 1681-1688. | |
| 3 | 王晓菲, 罗珠珠, 李玲玲, 等. 黄土高原不同种植年限苜蓿土壤固氮微生物群落结构和丰度特征 [J]. 中国生态农业学报: 中英文, 2023, 31(5): 665-676. |
| Wang XF, Luo ZZ, Li LL, et al. Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau [J]. Chin J Eco Agric, 2023, 31(5): 665-676. | |
| 4 | Ben Romdhane S, De Lajudie P, Fuhrmann JJ, et al. Potential role of rhizobia to enhance chickpea-growth and yield in low fertility-soils of Tunisia [J]. Antonie Van Leeuwenhoek, 2022, 115(7): 921-932. |
| 5 | 陈海荣, 刘欢, 伍善东, 等. 一株花生根瘤菌高效菌株的筛选及其在原生环境中的应用 [J]. 激光生物学报, 2025, 34(1): 45-53, 62. |
| Chen HR, Liu H, Wu SD, et al. Screening of an efficient peanut Rhizobium strain and its application in primary environment [J]. Acta Laser Biol Sin, 2025, 34(1): 45-53, 62. | |
| 6 | 宋维民, 王丽艳, 郭永霞, 等. 秸秆还田条件下固氮蓝藻复合菌剂与促生细菌SM13对水稻产量及稻米品质的影响 [J]. 南方农业学报, 2021, 52(3): 762-768. |
| Song WM, Wang LY, Guo YX, et al. Effects of nitrogen-fixing cyanobacteria complex microbial inoculant and growth-promoting bacteria SM13 on yield and quality of rice with straw turnover [J]. J South Agric, 2021, 52(3): 762-768. | |
| 7 | Zhang W, Bahadur A, Sajjad W, et al. Bacterial diversity and community composition distribution in cold-desert habitats of Qinghai-Tibet Plateau, China [J]. Microorganisms, 2021, 9(2): 262. |
| 8 | 王卫霞. 新疆几种典型荒漠植物根际微生物特征及内生固氮菌的分离、促生性能研究 [D]. 乌鲁木齐: 新疆农业大学, 2009. |
| Wang WX. Characteristics of rhizosphere microorganisms of several typical desert plants in Xinjiang and isolation and growth-promoting performance of endophytic nitrogen-fixing bacteria [D]. Urumqi: Xinjiang Agricultural University, 2009. | |
| 9 | Timmusk S, Abd El-Daim IA, Copolovici L, et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles [J]. PLoS One, 2014, 9(5): e96086. |
| 10 | Ullah S, Bano A. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity [J]. Can J Microbiol, 2015, 61(4): 307-313. |
| 11 | 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展 [J]. 生态学报, 2016, 36(17): 5285-5297. |
| Chen WL, Li J, Zhu HH, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms [J]. Acta Ecol Sin, 2016, 36(17): 5285-5297. | |
| 12 | Teng Y, Wang XM, Li LN, et al. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils [J]. Front Plant Sci, 2015, 6: 32. |
| 13 | 杨鸿儒, 袁博, 赵霞, 等. 三种荒漠灌木根际可培养固氮细菌类群及其固氮和产铁载体能力 [J]. 微生物学通报, 2016, 43(11): 2366-2373. |
| Yang HR, Yuan B, Zhao X, et al. Cultivable diazotrophic community in the rhizosphere of three desert shrubs and their nitrogen-fixation and siderophore-producing capabilities [J]. Microbiol China, 2016, 43(11): 2366-2373. | |
| 14 | 刘爽, 姚佳妮, 沈聪, 等. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析 [J]. 生物技术通报, 2022, 38(12): 252-262. |
| Liu S, Yao JN, Shen C, et al. Fluorescent quantitative PCR of nifH gene and diversity analysis of nitrogen-fixing bacteria in the rhizosphere soil of Caragana spp. of desert grassland [J]. Biotechnol Bull, 2022, 38(12): 252-262. | |
| 15 | 代金霞, 周波, 田平雅. 荒漠植物柠条产ACC脱氨酶根际促生菌的筛选及其促生特性研究 [J]. 生态环境学报, 2017, 26(3): 386-391. |
| Dai JX, Zhou B, Tian PY. Screening and growth-promoting effects of rhizobacteria with ACC deaminase activity from rhizosphere soil of Caragana korshinskii grown in desert grassland [J]. Ecol Environ Sci, 2017, 26(3): 386-391. | |
| 16 | 杜艺, 周波, 袁娜娜, 等. 荒漠植物根际解磷细菌的筛选及抑菌和促生特性研究 [J]. 农业科学研究, 2024, 45(1): 20-25. |
| Du Y, Zhou B, Yuan NN, et al. Screening of phosphate-solubilizing bacteria in rhizosphere of desert plants and their antibacterial and growth-promoting effects [J]. J Agric Sci, 2024, 45(1): 20-25. | |
| 17 | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册 [M]. 北京: 科学出版社, 2001. |
| Dong XZ, Cai MY. Handbook of identification of common bacterial systems [M]. Beijing: Science Press, 2001. | |
| 18 | 布坎南, 中国科学院微生物研究所. 伯杰氏细菌鉴定手册[M]. 第8版, 北京: 科学出版社, 1984. |
| Buchanan, Institute of Microbiology, Chinese Academy of Sciences. Bergey's manual of determinative bacteriology[M]. 8th ed., Beijing: Science Press, 1984. | |
| 19 | 郭振华. 阿尔山地区白桦和落叶松根际土壤固氮菌初步研究 [D]. 呼和浩特: 内蒙古农业大学, 2019. |
| Guo ZH. Preliminary study on nitrogen-fixing bacteria in rhizosphere soil of Betula platyphylla and Larix gmelinii in Aershan area [D]. Hohhot: Inner Mongolia Agricultural University, 2019. | |
| 20 | 张胜男, 杨杉杉, 高海燕, 等. 沙蓬(Agriophyllum squarrosum)根际固氮菌群落结构特征 [J]. 中国沙漠, 2024, 44(4): 174-183. |
| Zhang SN, Yang SS, Gao HY, et al. Dynamic characteristics of diazotrophs community in the rhizosphere of Agriophyllum squarrosum [J]. J Desert Res, 2024, 44(4): 174-183. | |
| 21 | Mubeen M, Bano A, Ali B, et al. Effect of plant growth promoting bacteria and drought on spring maize (Zea mays L.) [J]. Pak J Bot, 2021, 53(2): 731-739. |
| 22 | 曹晶晶, 熊悯梓, 钞亚鹏, 等. 极耐盐碱固氮菌的分离鉴定及固氮特性研究 [J]. 微生物学报, 2021, 61(11): 3483-3495. |
| Cao JJ, Xiong MZ, Chao YP, et al. Isolation and identification of extremely salt-tolerant Azotobacter and its nitrogen-fixing characteristics [J]. Acta Microbiol Sin, 2021, 61(11): 3483-3495. | |
| 23 | 沈聪, 刘爽, 苏建宇, 等. 半干旱荒漠区柠条根际细菌群落结构与功能 [J]. 基因组学与应用生物学, 2021, 40(Z4): 3508-3517. |
| Shen C, Liu S, Su JY, et al. Rhizosphere bacterial community structure and function of Caragana korshinskii in semiarid desert area [J]. Genomics and Applied Biology, 2021, 40(Z4): 3508-3517. | |
| 24 | Ashry NM, Alaidaroos BA, Mohamed SA, et al. Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR) [J]. Saudi J Biol Sci, 2022, 29(3): 1760-1769. |
| 25 | Gadhave KR, Devlin PF, Ebertz A, et al. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner [J]. Microb Ecol, 2018, 76(3): 741-750. |
| 26 | Ahmed B, Shahid M, Syed A, et al. Drought tolerant Enterobacter sp./Leclercia adecarboxylata secretes indole-3-acetic acid and other biomolecules and enhances the biological attributes of Vigna radiata (L.) R. Wilczek in water deficit conditions [J]. Biology, 2021, 10(11): 1149. |
| 27 | 徐太海, 齐传伟, 靳晓晨, 等. 耐盐碱细菌筛选及与发酵尾液肥料的配施应用研究 [J]. 环境科学与管理, 2022, 47(9): 143-147. |
| Xu TH, Qi CW, Jin XC, et al. Screening of saline alkali tolerant bacteria and its combined application with fermentation tail liquor fertilizer [J]. Environ Sci Manag, 2022, 47(9): 143-147. | |
| 28 | 王佳玮, 谭澳平, 刘建利, 等. 荒漠植物根际促生菌的筛选及其对青贮玉米幼苗的促生效应 [J]. 干旱地区农业研究, 2024, 42(2): 210-221. |
| Wang JW, Tan AP, Liu JL, et al. Screening of rhizosphere growth-promoting bacteria of desert plants and its promoting effects on silage maize seedlings [J]. Agric Res Arid Areas, 2024, 42(2): 210-221. | |
| 29 | 李显刚, 姚拓, 王小利, 等. 一株分离自葛藤根际高效溶磷细菌特性研究及菌株鉴定 [J]. 中国土壤与肥料, 2012(2): 87-91. |
| Li XG, Yao T, Wang XL, et al. Characteristics and identification of a dissolving phosphate bacteria strain isolated from rhizosphere of Puerarialobata [J]. Soil Fertil Sci China, 2012(2): 87-91. | |
| 30 | Tiwari G, Duraivadivel P, Sharma S, et al. 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress [J]. Sci Rep, 2018, 8(1): 17513. |
| 31 | 杨红军, 王浩洋, 崔庆华, 等. 盐胁迫下盐地碱蓬根系分泌物中化合物的种类和含量研究 [J]. 湿地科学, 2023, 21(5): 663-670. |
| Yang HJ, Wang HY, Cui QH, et al. Components and contents of compounds in root exudates of Suaeda salsa under salt stress [J]. Wetl Sci, 2023, 21(5): 663-670. | |
| 32 | 韩文星, 姚拓, 梁启鹏, 等. PGPR菌肥对燕麦根系性状影响的研究 [J]. 草原与草坪, 2008, 28(4): 1-4. |
| Han WX, Yao T, Liang QP, et al. Effect of PGPR biofertilizer on root traits of Oat [J]. Grassland Turf, 2008, 28(4): 1-4. | |
| 33 | 闫增林. 耐盐促生细菌的筛选及其对小麦生长的影响 [D]. 泰安: 山东农业大学, 2019. |
| Yan ZL. Screening of salt-tolerant growth-promoting bacteria and its effect on wheat growth [D]. Tai'an: Shandong Agricultural University, 2019. |
| [1] | 段永红, 杨欣, 于冠群, 夏俊俊, 宋陆帅, 白小东, 彭锁堂. 125份马铃薯种质资源遗传多样性及主成分分析[J]. 生物技术通报, 2025, 41(6): 130-143. |
| [2] | 王斌, 林薇, 肖艳辉, 袁晓. 植物富含甘氨酸蛋白家族功能研究进展[J]. 生物技术通报, 2025, 41(2): 1-17. |
| [3] | 于静, 于桂爽, 孙昊杰, 姜春姣, 苑广迪, 杨珍, 王志伟, 王超, 王传堂. 花生种用品质影响因素及相关标记研究[J]. 生物技术通报, 2025, 41(2): 284-294. |
| [4] | 贺涵, 刘传和, 喻梦凡, 袁梦萍, 魏岳荣, 杨敏, 邝瑞彬, 周陈平, 吴夏明, 徐泽. 基于重测序的菠萝基因组InDel标记的开发[J]. 生物技术通报, 2025, 41(2): 65-76. |
| [5] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
| [6] | 毛向红, 卢瑶, 范向斌, 杜培兵, 白小东. 基于SSR荧光标记毛细管电泳的马铃薯品种遗传多样性分析及分子身份证构建[J]. 生物技术通报, 2024, 40(9): 131-140. |
| [7] | 赵平娟, 林晨俞, 王梦月, 张秀春, 李淑霞, 阮孟斌. 木薯SDH蛋白的序列分析及其与MeH1.2关系的研究[J]. 生物技术通报, 2024, 40(9): 74-81. |
| [8] | 马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. |
| [9] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
| [10] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
| [11] | 李思琪, 张文臣, 杨柳, 付庆新, 洪新, 张海旺. 基于SSR标记的文冠果遗传多样性分析及指纹图谱构建[J]. 生物技术通报, 2024, 40(5): 74-83. |
| [12] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
| [13] | 李晴, 石雨荷, 朱珏, 李晓玲, 侯超文, 童巧珍. 基于SCoT分子标记分析白术种质资源遗传多样性及DNA指纹图谱构建[J]. 生物技术通报, 2024, 40(11): 142-151. |
| [14] | 李炯珊, 杨泽, 闫星, 刘义珍, 郭宇双, 薛金爱, 孙希平, 季春丽, 张春辉, 李润植. 四尾栅藻提高大豆草甘膦抗性及促生效应分析[J]. 生物技术通报, 2024, 40(11): 236-247. |
| [15] | 叶柳健, 贺愉岚, 王小虎, 韦圣博, 何双, 朱绮霞, 卢洁, 周礼芹. 解淀粉芽孢杆菌YK3对沃柑溃疡病的防效及叶际细菌群落相关性的影响[J]. 生物技术通报, 2024, 40(11): 248-258. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||