生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 198-207.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0901

• 研究报告 • 上一篇    下一篇

花生转录因子AhHDZ70的生物信息学分析及耐盐耐旱性研究

吴翠翠1(), 陈登科1,2(), 兰刚1, 夏芝1, 李朋波1()   

  1. 1.山西农业大学棉花研究所,运城 044000
    2.山西农业大学农学院,晋中 030800
  • 收稿日期:2025-08-20 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 李朋波,男,博士,研究员,研究方向 :作物遗传育种;E-mail: lipengbo@sxau.edu.cn
  • 作者简介:吴翠翠,女,博士,副研究员,研究方向 :作物遗传育种;E-mail: wucuicui19821021@126.com
    吴翠翠,女,博士,副研究员,研究方向 :作物遗传育种;E-mail: wucuicui19821021@126.com
  • 基金资助:
    山西省科技重大专项“揭榜挂帅”项目(202201140601025-4-03);山西农业大学棉花研究所博士基金项目(SBSJJ2023-02);山西农业大学科技创新提升工程项目(CXGC2023054)

Bioinformatics Analysis of Peanut Transcription Factor AhHDZ70 and Its Tolerances to Salt and Drought

WU Cui-cui1(), CHEN Deng-ke1,2(), LAN Gang1, XIA Zhi1, LI Peng-bo1()   

  1. 1.Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000
    2.College of Agriculture, Shanxi Agricultural University, Jinzhong 030800
  • Received:2025-08-20 Published:2026-01-26 Online:2026-02-04

摘要:

目的 干旱和盐胁迫是严重影响我国花生产量及品质的环境因素。探究AhHDZ70(Ah12g074600.1)基因结构和功能,揭示其在花生耐旱和耐盐性方面的作用,为花生抗盐和抗旱育种提供重要的基因资源。 方法 利用生物信息学方法对AhHDZ70进行理化性质、基因结构、系统发育、启动子顺式元件、蛋白互作分析;采用荧光定量PCR技术分析AhHDZ70基因在不同组织器官和盐、干旱、高温、低温胁迫下的表达量;利用烟草瞬时转化技术进行AhHDZ70基因的亚细胞定位分析;并采用转基因技术在拟南芥中进行遗传转化,通过盐和干旱胁迫处理进一步验证该基因的生物学功能。 结果 AhHDZ70编码326个氨基酸,是不稳定的亲水蛋白,无信号肽,其二级和三级结构以无规则卷曲为主。结构域分析表明,AhHDZ70包含4个外显子和3个内含子。AhHDZ70启动子区包含2个干旱诱导功能元件(MBS基序)、1个逆境胁迫响应元件(TC-rich repeats基序)和1个低温响应元件(LTR基序)。转录组结合RT-qPCR分析表明,AhHDZ70在种子中的表达量最高,正向响应盐、干旱、高温和低温胁迫。亚定位实验结果显示,AhHDZ70定位于细胞核。AhHDZ70异源过表达拟南芥获得纯合的转基因植株,通过盐、干旱胁迫处理发现,AhHDZ70过表达转基因植株的发芽率均显著高于WT,且根长极显著长于WT。 结论 AhHDZ70属于HD-ZIP Ⅱ转录因子,定位于细胞核。AhHDZ70可能参与对花生多个组织生长发育的调控,并可能正向调控花生对盐和干旱胁迫的响应。

关键词: 花生, 转录因子, AhHDZ70, 生物信息学分析, 表达模式, 耐盐, 耐旱, 基因功能

Abstract:

Objective Drought and salinity stress are critical environmental factors that severely affect the yield and quality of peanuts (Arachis hypogaea L.) in China. Investigating the structure and function of AhHDZ70 (Ah12g074600.1) gene will reveal its function in tolerance of peanut to drought and salt, and provide essential gene resources for peanut salt resistance and drought resistance breeding. Method Bioinformatics method were applied to analyze the physical and chemical properties, gene structure, phylogeny, cis-element of promoter, protein interaction of AhHDZ70. Fluorescence quantitative PCR technology was used to identify the expressions of AhHDZ70 gene in different tissues and organs, and under salt, drought, high temperature and low temperature stresses. Subcellular localization analysis was performed using tobacco transient transformation technology. Genetic transformation was carried out in Arabidopsis and biological function of AhHDZ70 was further verified by salt and drought stress treatment. Result AhHDZ70 encoded 326 amino acids, which was an unstable hydrophilic protein with no signal peptide, its secondary and tertiary structures were mainly characterized by irregular curling. Domain analysis showed that AhHDZ70 contained 4 exons and 3 introns. The AhHDZ70 promoter region contained two drought-induced functional elements (MBS motif), one adversity stress response element (TC-richrepeats motif), and one cryogenic response element (LTR motif). The main form of its secondary structure and tertiary structure was irregular curl. Transcriptome combined with RT-qPCR analysis showed that AhHDZ70 had the highest expression in seeds and responded positively to salt, drought, high temperature and low temperature stress. The results of subcellular localization showed that AhHDZ70 was located in the nucleus. AhHDZ70 heterologously overexpressed Arabidopsis to obtain homozygous transgenic plants. Under salt and drought stress, the germination rate of AhHDZ70-overexpressed transgenic lines was significantly higher than that of WT, and the root length was significantly longer than WT. Conclusion AhHDZ70 belongs to the HD-ZIP II transcription factor and is located in the nucleus. AhHDZ70 might play a regulatory role in the growth and development of various tissues in peanuts. Additionally, AhHDZ70 is likely involved in positively regulating peanut's response to salt and drought stress.

Key words: peanut, transcription factor, AhHDZ70, bioinformatics analysis, expression pattern, tolerance to salt, tolerance to drought, gene function