[1]Kahn P. From genome to proteome: looking at a cell’s proteins[J]. Science, 1995, 270: 369-370. [2]Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol, 1999, 17(3): 121-127. [3]孔谦, 陈中健, 贝锦龙, 等. 蛋白质组学方法及其在农业生物科研领域的应用[J]. 广东农业科学, 2013(15): 164-167. [4]尹稳, 伏旭, 李平. 蛋白质组学的应用研究进展[J]. 生物技术通报, 2014(1): 32-38. [5]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7): 1090-1094. [6]Komatsu S, Yano H. Update and challenges on proteomics in rice[J]. Proteomics, 2006, 6(14): 4057-4068. [7]Wang YD, Wang X, Ngai SM, et al. Comparative proteomics analysis of selenium responses in selenium-enriched rice grains[J]. J Proteome Res, 2013, 12(2): 808-820. [8] Yu J, Chen S, Wang T, et al. Comparative proteomic analysis of Puc-cinellia tenuiflora leaves under Na2CO3 Stress[J]. International Journal of Molecular Sciences, 2013, 14(1): 1740-1762. [9]Sara R, Maria GE, Siroos M, et al. The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation[J]. J Proteomics, 2011, 74(5): 643-659. [10]Twyman RM. Principles of Proteomics[M]//王恒樑, 袁静, 刘先凯等, 译. 北京: 化学工业出版社, 2007: 219. [11]O’Farrell PH. High-resolution two-dimensional electrophoresis of proteins[J]. J Bio Chem, 1975, 250: 4007-4021. [12]Rossignol M. Analysis of the plant proteome[J]. Curr Opin Biotech, 2001, 12(2): 131-134. [13] Chen S, Maya-Mendoza A, Zeng K, et al. Interaction with checkpo-int kinase 1 modulates the recruitment of nucleophosmin to chrom-atin[J]. J Proteome Res, 2009, 8: 4693-704. [14]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts[J]. Electrophoresis, 1997, 18: 2071-2077. [15]Zhang J, Song MQ, Zhu JS, et al. Identification of differentially-expressed proteins between early submucosal non-invasive and invasive colorectal cancer using 2D-DIGE and mass spectrometry[J]. Int Journal Immuno Ph, 2011, 24(4): 849-859. [16]谢秀枝, 王欣, 刘丽华, 等. iTRAQ技术及其在蛋白质组学中的应用[J]. 中国生物化学与分子生物学报, 2011, 27(7): 616-621. [17]Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Mol Cell Proteomics, 2004, 3(12): 1154-1169. [18]Pierce A, Unwin RD, Evans CA, et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases[J]. Mol Cell Proteomics, 2008, 7(5): 853-863. [19]Rudella A, Friso G, Alonso JM, et al. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis[J]. Plant Cell, 2006, 18(7): 1704-1721. [20]Glen A, Gan CS, Hamdy FC, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression[J]. J Proteome Res, 2008, 7(3): 897-907. [21]Koomen J, Hawke D, Kobayashi R. Developing an understanding of proteomics: An introduction to biological mass spectrometry[J]. Cancer Invest, 2005, 23(1): 47 -59. [22]Shi R, Kumar C, Zougman A, et al. Analysis of the mouse liver proteome using advanced mass spectrometry[J]. J Proteome Res, 2007, 6(8): 2963-2972. [23]康俊梅. 低温胁迫下野牛草生理生化响应及蛋白质组学研究[D]. 北京: 中国农业科学院, 2008. [24]Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature, 2000, 405(6788): 837-846. [25]李开绵, 林雄, 叶剑秋, 等. 华南6号木薯的选育[J]. 热带作物学报, 2002, 23(4): 39-43. [26]张鹏, 安冬, 马秋香, 等. 木薯分子育种中若干基本科学问题的思考与研究进展[J]. 中国科学: 生命科学, 2013, 43: 1082-1089. [27]闫庆祥, 叶剑秋, 李开绵, 等. 9 个木薯新品种(系)引种试种适应性研究初报[J]. 热带农业科学, 2005, 25(5): 5-7. [28]Liu J, Zheng Q, Ma Q, et al. Cassava genetic transformation and its application in breeding[J]. J Integr Plant Biol, 2011, 53: 552-569. [29]Zhao S, Dominique D, Teresa S, et al. Development of waxy cassava With different biological and physico-chemical characteristics of starches for industrial applications[J]. Biotechnol Bioeng, 2011, 108(8): 1925-1935. [30]Xu J, Yang J, Duan X, et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava(Manihot esculenta Crantz)[J]. BMC Plant Biol, 2014, 14: 208. [31]Sayre R, Beeching J, Cahoon E, et al. The biocassava plus program: biofortification of cassava for sub-Saharan Africa[J]. Annu Rev Plant Biol, 2011, 62: 251-272. [32]Wang W, Feng B, Xiao J, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nat Commun, 2014, 5: 5110. [33]Chen S, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato(Solanum lycopersicum)seedlings: effect of genotype and exogenous application of glycinebetaine[J]. J Exp Bot, 2009, 60: 2005-2019. [34]谢锦云, 李小兰, 陈平, 等. 温敏核不育水稻花药蛋白质组初步分析[J]. 中国生物化学与分子生物学报, 2003, 19(2): 215-221. [35]范宝莉, 王振英, 陈宏, 等. 小麦T型细胞质雄性不育系、保持系蛋白质双向电泳比较研究[J]. 实验生物学报, 2004, 37(1): 45-49. [36]陈丽霞, 李英慧, 任朝阳, 等. 利用双向电泳技术分离大豆矮秆突变体相关蛋白[J]. 中国生物工程杂志, 2007, 27(3): 76-82. [37]朱友林, 吴健胜, 王金生. 水稻对白叶枯病菌抗性相关蛋白的双向电泳分析[J]. 中国农业科学, 2000, 33(4): 91-93. [38]陈荣智, 翁清妹, 黄臻, 等. 水稻对褐飞虱抗性相关蛋白的双向电泳分析[J]. 植物学报, 2002, 44(4): 427-432. [39]Shi J, Chen S, Gollop N, et al. Effects of anaerobic stress on the proteome of citrus fruit[J]. Plant Sci, 2008, 175: 478-486. [40]Majoul T, Bancel E, Tribo E, et al. 2004, Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins fromnon-prolaminsfraction[J]. Proteomics, 2004, 4: 505-513. [41]Chen S, Martin C, Maya-Mendoza A, et al. Reduced expression of lamin A/C results in modified cell signalling and metabolism coupled with changes in expression of structural proteins[J]. J Proteome Res, 2009, 8(11): 5196-5211. [42]Tsugita A, Kawakami T, Uchiyama Y, et al. Separation and characterization of rice proteins[J]. Electrophoresis, 1994, 15(5): 708-720. [43]Peltier JB, Friso G, Kalume DE, et al. Proteomic of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins[J]. Plant Cell, 2000, 12: 319-341. [44]Heazlewood JL, Howell KA, Whelan J, et al. Towards an analysis of the rice mitochondrial proteome[J]. Plant Physiol, 2003, 132(1): 230-242. [45]Millar AH, Trend AE, Heazlewood JL. Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome containing respiratory complexes[J]. J Biol Chem, 2004, 279(38): 39471-39478. [46]陈霆. 木薯野生种与栽培种光合作用特性及蛋白质组学分析[D]. 海口: 海南大学, 2014. [47]宋红艳. 木薯野生种和栽培种的块根转录组研究[D]. 海口: 海南大学, 2015. [48]Carvalho LJCB, de Almeida JD, Anderson JV, et al. Studies on variation of carotenoid-proteins content in cassava(Manihot esculenta Crantz)storage root reveal implications for breeding and the use of induced mutations[J]. Plant Mutation Reports, 2013, 3: 25-36. [49]Ceballos H, Morante N, Sánchez T, et al. Rapid cycling recurrent selection for increased carotenoids content in cassava roots[J]. Crop Sci, 2013, 53: 1-10. [50]Sánchez T, Ceballos H, Dufour D, et al. Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques[J]. Food Chem, 2014, 151: 444-451. [51]Carvalho LJCB, Lippolis J, Chen S, et al. Characterization of carotenoid-protein complexes and gene expressio analysis associated with carotenoid sequestration in pigmented Cassava(Manihot esculenta Crantz)Storage Root[J]. The Open Biochem J, 2012, 6: 116-130. [52]Preberg T, Wrisher M, Fulgos H, et al. Ultrastructural characterization of the reversible differentiation of chloroplasts in cucumber fruit[J]. J Plant Physiol, 2008, 51: 122-131. [53]Lu S, van Eck J, Zhou X, et al. The caulifl ower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation[J]. Plant Cell, 2006, 18: 3594-3605. [54]Li L, van Eck J. Metabolic engineering of carotenoid accumulation by creating a metabolic sink[J]. Transgenet Res, 2007, 16: 581-585. [55]Laizet Y, Pontier D, Mache R, et al. Subfamily organiza-tion and phylogenetic origin of genes encoding plastid lipid-associated proteins of the fibrillin type[J]. J Genome Sci Technol, 2004, 3(1): 19-28. [56]周锴. 木薯块根不同发育期食用品质和有色体蛋白质组学研究[D]. 海口: 海南大学, 2015. [57]杨龙. 木薯块根β-胡萝卜素积累的蛋白质组学研究[D]. 海口: 海南大学, 2015. [58] 陈显双, 韦丽君, 田益农, 等. 木薯多倍体植株的诱导研究[J]. 热带农业科学, 2008, 28(1): 17-20. [59]Carvalho R, Guerram. Cytogenetics of Manihot esculenta Crantz(cassava)and eight related species[J]. Hereditas, 2002, 136: 159-168. [60]Allum JF, Bringloe DH, Roberts AV. Chromosome doubling in a Rosa rugosa Thunb hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time[J]. Plant Cell Rep, 2007, 26(11): 1977-1984. [61]凡杰. 木薯多倍体的倍性鉴定及蛋白组学研究[D]. 海口: 海南大学, 2012. [62] An F, Fan J, Li J, et al. Comparison of leaf proteomes of cassava(Manihot esculenta Crantz)cultivar NZ199 diploid and autotetra-ploid genotypes[J]. PLoS One, 2014, 9(4): e85991. [63]安飞飞, 凡杰, 李庚虎, 等. 华南8号木薯及其同源四倍体诱导株系叶片蛋白质组及叶绿素荧光差异分析[J]. 中国农业科学, 2013, 46(19): 3978-3987. [64]安飞飞, 陈松笔, 李庚虎, 等. 华南8号木薯及其四倍体块根淀粉及蛋白表达谱的差异分析[J]. 中国农业科学, 2015, 48(13): 2656-2665. [65]李庚虎. 木薯低温胁迫生理生化响应及蛋白质组学研究[D]. 海口: 海南大学, 2013. [66]徐娟. 木薯抗旱生理生化指标筛选与蛋白质组学研究[D]. 海口: 海南大学, 2013. [67]Li K, Zhu W, Zeng K, et al. Proteome characterization of cassava(Manihot esculenta Crantz)somatic embryos, plantlets and tuberous roots[J]. Proteome Science, 2010, 8: 10. [68]Ghosh SP, Ramanujam T, Jos JS, et al. Tuber Crops[M]. Oxford & IBH, New Dehli, 1988: 3-146. [69]Booth RH. Storage of fresh cassava(Manihot esculenta): post-harvest deterioration and its control[J]. Exper Agric, 1976, 12: 103-111. [70]Lebot V. Tropical Root and Tuber Crops;Cassava, sweet potato, yams and aroids[M]. CABI Oxfordshire, UK. 2009: 434. [71]Rudi N, Norton GW, Alwang J, et al. Economic impact analysis of marker-assisted breeding for resistance to pests and postharvest deterioration in cassava[J]. Afr Agric Resour Econ, 2010, 4: 110-22. [72] 张振文. 木薯块根采后生理的蛋白质调控机理研究[D]. 海口: 海南大学, 2012. [73] 简纯平. 采后木薯块根贮存能力及蛋白质组学分析[D]. 海口: 海南大学, 2013. |