生物技术通报 ›› 2016, Vol. 32 ›› Issue (8): 34-40.doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.007
蔡东梅,龚国利
修回日期:
2015-12-05
出版日期:
2016-08-25
发布日期:
2016-08-25
作者简介:
蔡东梅,女,硕士研究生,研究方向:中药生物技术;E-mail:caidongmei328@163.com
CAI Dong-mei, GONG Guo-li
Revised:
2015-12-05
Published:
2016-08-25
Online:
2016-08-25
摘要: 大肠杆菌是表达药用异源蛋白的首选微生物,此宿主目前已生产约30%被批准的药用蛋白。大肠杆菌具有生长迅速、产率高、效益大及易扩大培养的优势,促使它成为生物技术行业中蛋白大规模生产常选择的表达宿主。但大肠杆菌中密码子偏好性的存在及糖基化、磷酸化和蛋白水解加工等翻译后修饰的缺乏会限制其生产较复杂的重组生物药物。综述了大肠杆菌表达系统中几项满足生物技术产业需求的相关创新技术,介绍如何利用相关技术进步使大肠杆菌糖基化异源蛋白和表达包括全长糖基化抗体在内的复杂蛋白的过程,并对存在的问题及其研究前景进行展望,旨在为帮助大肠杆菌顺利生产更复杂的药用糖基化蛋白。
蔡东梅,龚国利. 大肠杆菌中生物药物的生产现状及展望[J]. 生物技术通报, 2016, 32(8): 34-40.
CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli[J]. Biotechnology Bulletin, 2016, 32(8): 34-40.
[1] Rodriguez V, Asenjo JA, Andrews BA. Design and implementation of a high yield production system for recombinant expression of peptides[J]. Microbial Cell Fact, 2014, 13(18):1-10. [2] Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems:A review of the existing biotechnology strategies[J]. Mol Cell Biochem, 2008, 307(1-2):249-264. [3] McNulty DE, Claffee BA, Huddleston MJ, et al. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli[J]. Protein Expr Purif, 2003, 27(2):365-374. [4] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [5] Sorensen HP, Laursen BS, Mortensen KK. Bacterial translation initiation-mechanism and regulation[J]. Dev Biophys Biochem, 2002, 2:243-270. [6] Kane JF, Violand BN, Curran DF, et al. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli[J]. Nucleic Acids Res, 1992, 20(24):6707-6712. [7] Calderone TL, Stevens RD, Oas TG. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli[J]. J Mol Biol, 1996, 262(4):407-412. [8] Yarian C, Marszalek M, Sochacka E, et al. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNA Lys UUU species[J]. Biochemistry, 2000, 39(44):13390-13395. [9] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [10] Redwan EM. Optimal gene sequence for optimal protein expression in Escherichia coli:principle requirements[J]. Arab J Biotechnol, 2006, 11(1):493-510. [11] Dieci G, et al. tRNA assisted overproduction of eukaryotic ribosom-al proteins[J]. Protein Expr Purif, 2000, 3:346-354. [12] El-Baky NA, Redwan EM. Therapeutic alpha-interferons protein:structure, production, and biosimilar PREP[J]. Biochem Biotechnol, 2015, 45(2):109-127. [13] Jeong W, Shin HC. Supply of the argU gene product allows high-level expression of recombinant human interferon-alpha-2a in Escherichia coli[J]. Biotechnol Lett, 1998, 20(1):19-22. [14] Valente CA, Prazeres DMF, Cabral JMS, et al. Translation feature of human alpha 2b interferon production in Escherichia coli[J]. Appl Environ Microbiol, 2004, 70(8):5033-5036. [15] Ferrer-Miralles N, Villaverde A. Bacterial cell factories for recombinant protein production;expanding the catalogue[J]. Microb Cell Fact, 2013, 12(1):113. [16] Tegel H, Tourle S, Ottosson J, et al. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3)[J]. Protein Expr Purif, 2010, 69(2):159-167. [17] Ringquist S, Shinedling S, Barrick D, et al. Translation initiation in Escherichia coli:sequences within the ribosome-binding site[J]. Mol Microbiol, 1992, 6(9):1219-1229. [18] Laursen BS, Sorensen HP, Mortensen KK, et al. Initiation of protein synthesis in bacteria[J]. Mol Biol Rev, 2005, 1:101-123. [19] Stenstrom C, Jin H, Major L, et al. Codon bias at the 3’-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli[J]. Gene, 2001, 263(1-2):273-284. [20] Sprengart ML, Porter AG. Functional importance of RNA interactions in selection of translation initiation codons[J]. Mol Microbiol, 1997, 24(1):19-28. [21] Etchegaray JP, Inouye M. Translational enhancement by an element example of molecular misreading in Alzheimer disease[J]. Trends Neurosci, 1999, 21:331-335. [22] Seo SW, Yang JS, Cho HS, et al. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels[J]. Sci Rep, 2014, 4(3):2231-2236. [23] Iost I, Dreyfus M. mRNA can be stabilized by DEAD-box proteins[J]. Nature, 1994, 372(6502):193-196. [24] Iost I, Bizebard T, Dreyus M. Functions of DEAD-box proteins in bacteria:current knowledge and pending questions[J]. Biochim Biophys Acta, 2013, 1829(8):866-877. [25] Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond[J]. Biotechnol Adv, 2012, 30(5):1102-1107. [26] Sanchez JC, Padron G, Santana H, et al. Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translation stop signal[J]. J Biotechnol, 1998, 63(3):179-186. [27] Poole ES, Brown CM, et al. The identity of the base following the stop codon determines the efficiency of in vivo translational termin-ation in Escherichia coli[J]. EMBO J, 1995, 1:151-158. [28] Fisher AC, Haitjema CH, Guarino C, et al. Production of secretory andextracellular N-Linked glycoproteins in Escherichia coli[J]. Appl Environ Microbiol, 2011, 77(3):871-881. [29] Overton TW. Recombinant protein production in bacterial hosts[J]. Drug Discovery Today, 2014, 19(5):590-601. [30] Carrio MM, Villaverde A. Role of molecular chaperones in inclusion body formation[J]. FEBS Lett, 2003, 537(1-3):215-221. [31] Cui SS, Lin XZ, Shen JH. Effect of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948[J]. Protein Expres Purif, 2011, 2:166-172. [32] Ronez F, Arbault P, et al. Co-expression of the small heat shock protein, Lo18, with b-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES[J]. Biotechnol Lett, 2012, 5:935-939. [33] Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli:Effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresource Technol, 2012, 123(4):135-143. [34] Yan X, Hu S, Guan YX, et al. Co-expression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli[J]. Appl Microbiolb Biotechnol, 2012, 93(3):1065-1074. [35] Voulgaridou GP, Mantso T, Chlichlia K, et al. Efficient E. coli expression strategies for production of soluble human crystalline ALDH3A1[J]. PLoS One, 2013, 8(2):65. [36] Folwarczna J, Moravec T, et al. Efficient expression of human papillomavirus 16 E7 oncoprotein fused to C-terminus of tobacco mosaic virus(TMV)coat protein using molecular chaperones in Escherichia coli[J]. Protein Expres Purif, 2012, 1:152-157. [37] Nausch H, et al. Recombinant production of human interleukin 6 in Escherichia coli[J]. PLoS One, 2013, 1:570-579. [38] Ow DS W, Lim DYX, Nissom PM, et al. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1. 3 production[J]. Microb Cell Fact, 2010, 9(8):1-14. [39] Maeng BH, Nam DH, Kim YH. Coexpression of molecular chapero-nes to enhance functional expression of anti-BNPscFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide[J]. Word J Microbiol Biotechnol, 2011, 6:1391-1398. [40] Khattar SK, Kundu PK, Gulati P, et al. Optimization and enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase(MAPK)in Escherichia coli[J]. Protein Peptide Lett, 2007, 14(8):756-760. [41] Fahnert B, Lilie H, Neubauer P. Inclusion bodies:formation and utilization[J]. Adv Biochem Eng Biotechnol, 2004, 89:93-142. [42] Jensen EB, Carlsen S. Production of recombinant human growth hormone in Escherichia coli:Expression of different precursors and physiological effects of glucose, acetate and salts[J]. Biotechnol Bioeng, 1990, 36(1):1-11. [43] Vasina JA, Baneyx F. Expression of aggregation prone recombinant proteins at low temperatures:a comparative study of the Escherichia coli cspA and tac promoters systems[J]. Protein Expr Purif, 1997, 9(2):211-218. [44] Lebendiker M, Danieli T. Production of prone-to-aggregate proteins[J]. FEBS Lett, 2014, 588(2):236-46. [45] Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli:a general review[J]. Protein Expr Purif, 2014, 94(2):22-32. [46] Feng Y, Xu Q, Yang T, et al. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli[J]. Protein Expr Purif, 2014, 99(4):64-69. [47] Jung ST, Kang TH, Kelton W, et al. Bypassing glycosylation:engineering aglycosylated full-length IgG antibodies for human therapy[J]. Curr Opin Biotechnol, 2011, 22(6):858-867. [48] Yim S, et al. High-level secretory production of human granulocytes- colony stimulating factor by fed-batch culture of recombinant Esch-erichia coli[J]. Bioprocess Biosyst Eng, 2001, 4:249-254. [49] Joly JC, et al. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation [J]. Proc Natl Acad Sci USA, 1998, 6:2773-2777. [50] Reilly DE, Yansura DG. Production of monoclonal antibodies in E. coli[M]//Shire SJ, Gombotz W, Bechtold-Peters K, et al. Current Trends in Monoclonal Antibody Development and Manufacturing. New York:Springer, 2010:295-308. [51] Mavrangelos C, Thiel M, Adamson PJ, et al. Increased yield and activity of soluble single-chain antibody fragments by combing high-level expression and the Skp periplasmic chaperonin[J]. Protein Expr Purif, 2001, 23(2):289-295. [52] Lee YJ, Lee DH, Jeong KJ. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli[J]. Appl Microbiol Biotechnol, 2014, 98(3):1237-1246. [53] Jenkins N. Modification of therapeutic proteins:challenges and prospects[J]. Cytotechnol, 2007, 53(1-3):121-125. [54] Walsh G, Jefferis R. Post-translational modifications in the contex of therapeutic proteins[J]. Nat Biotechnol, 2006, 24(10):1241-1252. [55] Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli[J]. Science, 2002, 298(5599):1790-1793. [56] Valderrama-Rincon JD, Fisher AC, Merritt JH, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli[J]. Nat Chem Biol, 2012, 8(5):434-436. [57] Ollis AA, Zhang S. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity[J]. Nat Chem Biol, 2014, 10(10):816-822. [58] Merritt JH, Ollis AA, Fisher AC, et al. Glycans-by-design:engineering bacteria for the biosynthesis of complex glycans and glycoconjugates[J]. Biotechnol Bioeng, 2013, 6:1550-1564. [59] Guccui J, Wren B. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanized glycoproteins[J]. J Pharm Pharmacol, 2015, 67(3):338-350. [60] Ihssen J, Kowarik M, et al. Production of glycoprotein vaccines in Escherichia coli[J]. Microb Cell Fact, 2010, 9(1):98-102. [61] Wetter M, Kowarik M, Steffen M, et al. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component[J]. Glycoc-onj J, 2013, 30(5):511-522. |
[1] | 梅欢, 李玥, 刘可蒙, 刘吉华. 小檗碱桥酶高效原核表达及生物合成l-SLR的研究[J]. 生物技术通报, 2023, 39(7): 277-287. |
[2] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
[3] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[4] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[5] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[6] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[7] | 高伟欣, 黄火清, 赵晶, 张鑫, 杨宁, 杨浩萌. 应用于基因编辑的核糖核蛋白复合体的构建与活性验证[J]. 生物技术通报, 2022, 38(8): 60-68. |
[8] | 孙曼銮, 葛赛, 卜佳, 朱壮彦. 大肠杆菌核糖核酸酶调控机制研究[J]. 生物技术通报, 2022, 38(3): 234-245. |
[9] | 赵宝顶, 吕佳, 申玉玉, 桂玲, 陈钟秀, 陈杰, 路福平, 黎明. 基于信号肽和分子伴侣策略促进大肠杆菌高效转化尿苷[J]. 生物技术通报, 2022, 38(11): 238-249. |
[10] | 李晓芳, 刘慧燕, 潘琳, 艾治宇, 李一鸣, 张恒, 方海田. 常温常压等离子体诱变选育高产L-异亮氨酸大肠杆菌[J]. 生物技术通报, 2022, 38(1): 150-156. |
[11] | 段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242. |
[12] | 贺小丽, 郭磊周, 韩佳慧, 唐殷, 袁媛, 代其林, 平淑珍, 江世杰. 细菌周质分子伴侣LolA研究进展[J]. 生物技术通报, 2021, 37(8): 275-283. |
[13] | 吴蓉, 曹佳睿, 曹君, 刘飞翔, 杨猛, 苏二正. 南极假丝酵母脂肪酶B基因在大肠杆菌中的表达和发酵优化[J]. 生物技术通报, 2021, 37(2): 138-148. |
[14] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
[15] | 陈桥, 吴海英, 王宗寿, 谢雨康, 李宜青, 孙俊松. 聚羟基丁酸酯合成引发的高密度生长大肠杆菌的多位点突变分析[J]. 生物技术通报, 2020, 36(7): 112-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||