[1] Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910):952-956. [2] Nahvi A, Sudarsan N, Ebert M, et al. Genetic control by a metabolite binging Mrna[J]. Chem Biol, 2002, 9(9):1043-1049. [3] Breaker RR. Complex riboswitches[J]. Science, 2008, 319(5871):1795-1797. [4] 王佳稳, 冯婧娴, 林俊生, 等. 适体核酶型人工核糖开关的设计[J]. 中国生物工程杂志, 2014, 34(2):59-64. [5] Grundy FJ, Henkin TM. From ribosome to riboswitch:control of gene expression in bacteria by RNA structural rearrangements[J]. Critical Reviews in Biochemistry & Molecular Biology, 2006, 41(6):329-338. [6] Barrick JE, Breaker RR. The distributions, mechanisms, and structures of metabolite-binding riboswitches[J]. Genome Biology, 2007, 8(11):R239. [7] Serganov A, Nudler E. A decade of riboswitches[J]. Cell, 2013, 152(152):17-24. [8] Serganov A, Yuan YR, Pikovskaya O, et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs[J]. Chemistry & Biology, 2004, 11(12):1729-1741. [9] Serganov A, Polonskaia A, Phan AT, et al. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch[J]. Nature, 2006, 441(7097):1167-1171. [10] Gilbert SD, Rambo RP, Van TD, et al. Structure of the SAM-II riboswitch bound to S-adenosylmethionine[J]. Nature Structural & Molecular Biology, 2008, 15(2):177-182. [11] Li S, Breaker RR. Fluoride enhances the activity of fungicides that destabilize cell membranes[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(9):3317-3322. [12] Liberman JA, Salim M, Krucinska J, et al. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold[J]. Nature Chemical Biology, 2013, 9(6):353-355. [13] 贾东方, 林俊生, 刁勇. 抗生素开发的新靶点:核糖开关[J]. 药学学报, 2013, 48(9):1361-1368. [14] Furukawa K, Gu H, Sudarsan N, et al. Identification of ligand analogues that control c-di-GMP riboswitches[J]. Acs Chemical Biology, 2012, 7(8):1436-1443. [15] Furukawa K, Ramesh A, Zhou Z, et al. Bacterial riboswitches cooperatively bind Ni 2+ , or Co 2+ , ions and control expression of heavy metal transporters[J]. Molecular Cell, 2015, 57(6):1088-1098. [16] Price IR, Gaballa A, Ding F, et al. Mn 2+ -sensing mechanisms of yybP-ykoY orphan riboswitches[J]. Mol Cell, 2015, 57(6):1110-1123. [17] Meyer MM, Hammond MC, Salinas Y, et al. Challenges of ligand identification for riboswitch candidates[J]. RNA Biol, 2011, 8 (1):5-10. [18] Watson PY, Fedor MJ. The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis[J]. Nat Chem Biol, 2012, 8(12):963- 965. [19] 冯婧娴. 人工核酶核糖开关调控转基因表达的性能及优化[D]. 厦门:华侨大学, 2015. [20] Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria[J]. Cell, 2003, 113(5):577-586. [21] Gilbert SD, Montange RK, Stoddard CD, et al. Structural studies of the purine and SAM binding riboswitches[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71:259-268. [22] Hollands K, Proshkin S, Sklyarova S, et al. Riboswitch control of Rho-dependent transcription termination[J]. PNAS, 2012, 109(14):5376-5381. [23] Haller A, Rieder U, Aigner M, et al. Conformational capture of the SAM-II riboswitch[J]. Nature Chemical Biology, 2011, 7(6):393-400. [24] Reining A, Nozinovic S, Schlepckow K, et al. Three-state mecha-nism couples ligand and temperature sensing in riboswitches[J]. Nature, 2013, 499(7458):355-359. [25] Collins JA, Irnov I, Baker S, et al. Mechanism of mRNA destabilization by the glmS ribozyme[J]. Genes & Development, 2007, 21(24):3356-3368. [26] Alberts B. The breakthroughs of 2009[J]. Science, 2009, 326(5960):1589. [27] Klauser B, Atanasov J, Siewert LK, et al. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae[J]. Acs Synthetic Biology, 2014, 4(5):516-525. [28] 杨会勇, 刁勇, 林俊生, 等. 新型基因表达调控元件——人工核糖开关的构建及筛选[J]. 生物工程学报, 2012, 28(2):134-143. [29] 冯婧娴, 王佳稳, 林俊生, 刁勇. 核酶核糖开关在基因治疗中的应用及挑战[J]. 药学学报, 2014, 49(11):1504-1511. [30] Chen YY, Jensen MC, Smolke CD. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems[J]. PNAS, 2010, 107(19):8531-8536. [31] Liang JC, Bloom RJ, Smolke CD. Engineering biological systems with synthetic RNA molecules[J]. Mol Cell, 2011, 43(6):915-926. [32] Theuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses[J]. International Journal of Antimicrobial Agents, 2012, 39(4):295-299. [33] Blount KF, Breaker RR. Riboswitches as antibacterial drug targets[J]. Nature Biotechnology, 2006, 24(12):1558-1564. [34] Jia X, Zhang J, Sun W, et al. Riboswitch control of aminoglycoside antibiotic resistance[J]. Cell, 2013, 152(1-2):68-81. [35] Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy[J]. Nat Biotechnol, 2012, 30(7):658-670. [36] Ketzer P, Kaufmann JK, Engelhardt S, et al. Artificial riboswitches for gene expression and replication control of DNA and RNAviruses[J]. PNAS, 2014, 111(5):E554-E562. [37] Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering:advances in small-molecule screening and selection[J]. Annu Rev Biochem, 2010, 79(1):563-590. [38] Jang S, Yang J, Sang WS, et al. Chapter seventeen-riboselector:riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms[J]. Methods in Enzymology, 2015, 550:341-362. [39] Yang J, Seo SW, Jang S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nat Commun, 2013, 4(1413):1- 7. [40] Muranaka N, Sharma V, Nomura Y, et al. An efficient platform for genetic selection and screening of gene switches in Escherichia coli[J]. Nucleic Acids Research, 2009, 37(5):e39. [41] Park M, Tsai SL, Chen W. Microbial biosensors:engineered microorganisms as the sensing machinery[J]. Sensors, 2013, 13(5):5777-5795. [42] Avciadali M, Wilhelm N, Perle N, et al. Absolute quantification of cell-bound DNA aptamers during SELEX[J]. Nucleic Acid Ther, 2013, 23(2):125-130. [43] Win MN, Smolke CD. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function[J]. PNAS, 2007, 104(36):14283-14288. [44] Hull CM, Anmangandla A, Bevilacqua PC. Bacterial riboswitches and ribozymes potently activate the human innate immune sensor PKR[J]. ACS Chem Biol, 2016, 11(4):1118-1127. |