生物技术通报 ›› 2017, Vol. 33 ›› Issue (4): 8-18.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.002
周文菲, 白娟, 龚春梅
收稿日期:
2016-09-16
出版日期:
2017-04-25
发布日期:
2017-04-25
作者简介:
周文菲,女,硕士研究生,研究方向:植物逆境生理学;E-mail:2464731587@qq.com
基金资助:
ZHOU Wen-fei, BAI Juan ,GONG Chun-mei
Received:
2016-09-16
Published:
2017-04-25
Online:
2017-04-25
摘要: 蛋白质翻译后修饰是机体蛋白发挥各种功能的重要先行步骤。逆境胁迫下活性氧可对氧化还原敏感的蛋白质进行可逆和不可逆的氧化修饰。可逆氧化修饰对逆境下植物生物功能的正常发挥乃至适应都至关重要,目前对活性氧调节植物蛋白质的可逆氧化修饰研究取得了相应进展。综述了植物蛋白质氧化修饰的方式位点及参与蛋白的调节机理,旨在阐明蛋白质可逆氧化修饰对植物抵御逆境造成的氧化胁迫的重大意义,同时概括对蛋白质可逆氧化修饰研究的有效方法。当前可以通过特定位点的突变实验和蛋白质组学的方法确定有无可逆氧化修饰并测定氧化修饰程度;未来以期通过综合实验控制参与反应的蛋白质来解析其还原及再生机理。
周文菲, 白娟, 龚春梅. 活性氧介导的植物蛋白质氧化修饰研究进展[J]. 生物技术通报, 2017, 33(4): 8-18.
ZHOU Wen-fei, BAI Juan ,GONG Chun-mei. Research Progress on the Oxidative Modification of Plant Proteins Mediated by Reactive Oxygen Species[J]. Biotechnology Bulletin, 2017, 33(4): 8-18.
[1] 刘金凤, 王京兰, 钱小红, 等. 翻译后修饰蛋白质组学研究的技术策略[J]. 中国生物化学与分子生物学报, 2007, 23(2):93-100. [2] Mann M, Jensen ON. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology, 2003, 21(3):255-261. [3] Kalume DE, Molina H, Pandey A. Tackling the phosphoproteome:tools and strategies[J]. Current Opinion in Chemical Biology, 2003, 7(1):64-69. [4] 宋博研, 朱卫国. 组蛋白甲基化修饰效应分子的研究进展[J]. 遗传, 2011, 33(4):285-292. [5] Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58:459-481. [6] 丁海东, 刘慧, 朱晓红, 等. 植物细胞蛋白质氧化及其蛋白质组学研究进展[J]. 中国农学通报, 2011, 27(33):187-193. [7] Waszczak C, Akter S, Eeckhout D, et al. Sulfenome mining in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2014, 111(31):11545-11550. [8] Ghesquière B, Gevaert K. Proteomics methods to study methionine oxidation[J]. Mass Spectrometry Reviews, 2014, 33(2):147-156. [9] Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2014, 1840(2):847-875. [10] Pan J, Carroll KS. Chemical biology approaches to study protein cysteine sulfenylation[J]. Biopolymers, 2014, 101(2):165-172. [11] Jacques S, Ghesquière B, De Bock PJ, et al. Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress [J]. Molecular & Cellular Proteomics, 2015, 14(5):1217-1229. [12] 张佳娣. 活性氧的信号传导途径[J]. 安徽农业科学, 2010, 38(16):8283-8285. [13] Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems:recipes for successful data collection and interpretation[J]. Plant, Cell & Environment, 2016, 66(10):1140-1160. [14] Rinalducci S, Murgiano L, Zolla L. Redox proteomics:basic principles and future perspectives for the detection of protein oxidation in plants[J]. Journal of Experimental Botany, 2008, 59(14):3781-3801. [15] Navrot N, Finnie C, Svensson B, et al. Plant redox proteomics[J]. Journal of Proteomics, 2011, 74(8):1450-1462. [16] 付强, 邹颉, 赵杰宏, 等. 植物氧化还原蛋白质组学的研究进展[J]. 贵州农业科学, 2013, 41(12):17-20. [17] Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases:history and cellular role in protecting against oxidative damage[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2005, 1703(2):203-212. [18] Ghezzi P, Bonetto V. Redox proteomics:identification of oxidatively modified proteins[J]. Proteomics, 2003, 3(7):1145-1153. [19] Couturier J, Chibani K, Jacquot JP, et al. Cysteine-based redox regulation and signaling in plants[J]. Frontiers in Plant Science, 2013, 4:105. [20] Liebster J, Kopoldova J. The radication chemistry of amino acids[J]. Advances in Radiation Biology, 2013, 1:157. [21] 李冰冰, 赵倩, 张龙富. 活性氧与蛋白质氧化损伤[J]. 平顶山工学院学报, 2005, 14(5):16-17. [22] Aulak KS, Miyagi M, Yan L, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge[J]. Proceedings of the National Academy of Sciences, 2001, 98(21):12056-12061. [23] Kanski J, Hong SJ, Schöneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry[J]. Journal of Biological Chemistry, 2005, 280(25):24261-24266. [24] Friso G, van Wijk KJ. Posttranslational protein modifications in plant metabolism[J]. Plant Physiology, 2015, 169(3):1469-1487. [25] Rao RSP, Møller IM, Thelen JJ, et al. Convergent signaling pathways interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation[J]. Cell Stress & Chaperones, 2015, 20(1):15-21. [26] 黄舒, 李刚, 朱建堂, 等. 植物Msr(methionine sulfoxide redu-ctase)基因家族的研究进展[J]. 生命的化学, 2015, 35(3):313-319. [27] 王海波, 邹竹荣, 龚明. 小桐子甲硫氨酸亚砜还原酶A的基因克隆及生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(4):821-829. [28] Drazic A, Winter J. The physiological role of reversible methionine oxidation[J]. Biochimica et Biophysica Acta, 2014, 1844(8):1367-1382. [29] Muthuramalingam M, Matros A, Scheibe R, et al. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo[J]. Frontiers in Plant Science, 2013, 4:54. [30] Kim HY, Fomenko DE, Yoon YE, et al. Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases[J]. Biochemistry, 2006, 45(46):13697-13704. [31] Tarrago L, Laugier E, Rey P. Protein-repairing methionine sulfoxide reductases in photosynthetic organisms:gene organization, reduction mechanisms, and physiological roles[J]. Molecular Plant, 2009, 2(2):202-217. [32] Lee BC, Dikiy A, Kim HY, et al. Functions and evolution of selenoprotein methionine sulfoxide reductases[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2009, 1790(11):1471-1477. [33] Stamler JS. Redox signaling:nitrosylation and related target interactions of nitric oxide[J]. Cell, 1994, 78(6):931-936. [34] Perissinotti LL, Turjanski AG, Estrin DA, et al. Transnitrosation of nitrosothiols:characterization of an elusive intermediate[J]. Journal of the American Chemical Society, 2005, 127(2):486-487. [35] 陈畅, 黄波, 韩佩韦, 等. 蛋白质巯基亚硝基化——一种典型氧化还原依赖的蛋白质翻译后修饰[J]. 生物化学与生物物理进展, 2006, 33(7):609-615. [36] 黄楚森, 朱维平, 徐玉芳, 等. 蛋白质巯基及其氧化性修饰的化学检测方法[J]. 药学学报, 2012, 47(3):280-290. [37] 黄波, 陈畅. 一氧化氮的功能及其作用机制(Ⅱ)——蛋白质巯基亚硝基化修饰[J]. 生物物理学报, 2012, 28(4):268-277. [38] Xu L, Eu JP, Meissner G, et al. Activation of the cardiac calcium release channel(ryanodine receptor)by poly-S-nitrosylation[J]. Science, 1998, 279(5348):234-237. [39] 梁颖, 李玉花. 植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J]. 植物生理学通讯, 2009, 45(10):1027-1032. [40] Hamnell-Pamment Y, Lind C, Palmberg C, et al. Determination of site-specificity of S-glutathionylated cellular proteins[J]. Biochemical and Biophysical Research Communications, 2005, 332(2):362-369. [41] 邹朝霞, 周宏博, 高旭. 谷胱甘肽化修饰与氧化还原信号转导[J]. 生命的化学, 2007, 27(5):410-413. [42] Sevilla F, Camejo D, Ortiz-Espín A, et al. The thioredoxin/peroxiredoxin/sulfiredoxin system:current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species[J]. Journal of Experimental Botany, 2015, 66(10):2945-2955. [43] Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin[J]. Nature, 2003, 425(6961):980-984. [44] 李奎, 白洁. 硫氧还蛋白的共价修饰[J]. 生命的化学, 2010, 30(1):54-58. [45] 王珊, 王辉, 陈小燕. 硫氧还蛋白-过氧化物氧还蛋白与过氧化氢构成环路参与肿瘤的发生与发展[J]. 中国生物化学与分子生物学报, 2015, 31(4):360-366. [46] 郑琼, 马旭俊, 杨传平. 硫氧还蛋白(Trx)的研究进展[J]. 分子植物育种, 2006, 4(6S):78-82. [47] Lee K, Lee J, Kim Y, et al. Defining the plant disulfide proteome[J]. Electrophoresis, 2004, 25(3):532-541. [48] Yano H, Wong JH, Lee YM, et al. A strategy for the identification of proteins targeted by thioredoxin[J]. Proceedings of the National Academy of Sciences, 2001, 98(8):4794-4799. [49] Le Moan N, Clement G, Le Maout S, et al. The Saccharomyces cerevisiae proteome of oxidized protein thiols contrasted functions for the thioredoxin and glutathione pathways[J]. Journal of Biological Chemistry, 2006, 281(15):10420-10430. [50] Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death:regulatory role of glutaredoxins[J]. Antioxidants & Redox Signaling, 2012, 17(12):1748-1763. [51] Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2014, 1840(2):901-905. [52] Valley CC, Cembran A, Perlmutter JD, et al. The methionine-aromatic motif plays a unique role in stabilizing protein structure[J]. Journal of Biological Chemistry, 2012, 287(42):34979-34991. [53] Gustavsson N, Kokke B, Härndahl U, et al. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein[J]. The Plant Journal, 2002, 29(5):545-553. [54] Bechtold U, Murphy DJ, Mullineaux PM. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights[J]. The Plant Cell, 2004, 16(4):908-919. [55] Li CW, Lee SH, Chieh PS, et al. Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidtive stress[J]. Plant and Cell Physiology, 2012, 53(10):1707-1719. [56] Hrabak EM, Chan CWM, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2):666-680. [57] Tarafdar S, Rusan NM, Levine RL. Site specific oxidation of calm-odulin by methionine sulfoxide reductase a in Drosophila[J]. The FASEB Journal, 2016, 30(1 Supplement):652-654. [58] Hardin SC, Larue CT, Oh MH, et al. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis [J]. Biochemical Journal, 2009, 422(2):305-312. [59] Ciorba MA, Heinemann SH, Weissbach H, et al. Regulation of voltage-dependent K + channels by methionine oxidation:effect of nitric oxide and vitamin C[J]. FEBS Letters, 1999, 442(1):48-52. [60] Erickson JR, Mei-Ling AJ, Guan X, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation[J]. Cell, 2008, 133(3):462-474. [61] Liu XP, Liu XY, Zhang J, et al. Molecular and functional characterization of sulfiredoxin homologs from higher plants[J]. Cell Research, 2006, 16(3):287-296. [62] Cerveau D, Ouahrani D, Marok MA, et al. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status[J]. Plant, Cell & Environment, 2016, 39(1):103-119. [63] Waszczak C, Akter S, Jacques S, et al. Oxidative post-translational modifications of cysteine residues in plant signal transduction[J]. Journal of Experimental Botany, 2015, 66(10):2923-2934. [64] Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants[J]. Plant Physiology, 2003, 132(3):1149-1152. [65] Jacques S, Ghesquire B, Van Breusegem F, et al. Plant proteins under oxidative attack[J]. Proteomics, 2013, 13(6):932-940. [66] Walton A, Tsiatsiani L, Jacques S, et al. Diagonal chromatography to study plant protein modifications[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2016, 1864(8):945-951. [67] Gevaert K, Van Damme J, Goethals M, et al. Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis:identification of more than 800 Escherichia coli proteins[J]. Molecular & Cellular Proteomics, 2002, 1(11):896-903. [68] MacCoss MJ, McDonald WH, Saraf A, et al. Shotgun identification of protein modifications from protein complexes and lens tissue[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7900-7905. [69] Jaffrey SR, Erdjument-Bromage H, Ferris CD, et al. Protein S-nitrosylation:a physiological signal for neuronal nitric oxide[J]. Nature Cell Biology, 2001, 3(2):193-197. [70] Hao G, Derakhshan B, Shi L, et al. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures[J]. Proceedings of the National Academy of Sciences, 2006, 103(4):1012-1017. [71] Rhee KY, Erdjument-Bromage H, Tempst P, et al. S-nitroso proteome of Mycobacterium tuberculosis:Enzymes of intermediary metabolism and antioxidant defense[J]. Proceedings of the National Academy of Sciences, 2005, 102(2):467-472. [72] Cheng G, Ikeda Y, Iuchi Y, et al. Detection of S-glutathionylated proteins by glutathione S-transferase overlay[J]. Archives of Biochemistry and Biophysics, 2005, 435(1):42-49. [73] Klatt P, Molina EP, Pérez-Sala D, et al. Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation[J]. Biochemical Journal, 2000, 349(2):567-578. |
[1] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[2] | 王慕镪, 陈琦, 马薇, 李春秀, 欧阳鹏飞, 许建和. 机器学习方法在酶定向进化中的应用进展[J]. 生物技术通报, 2023, 39(4): 38-48. |
[3] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[4] | 撒世娟, 伍涵宇, 温媛, 陈雪娜, 郑蕊, 姚新灵. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202. |
[5] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[6] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[7] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[8] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[9] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[10] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[11] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
[12] | 易芳, 来鹏程, 郑希鳌, 胡帅, 高燕丽. Kod DNA聚合酶的制备及纯化研究[J]. 生物技术通报, 2022, 38(5): 183-190. |
[13] | 任莹, 连通, 张春义, 姜凌. 玉米甲硫氨酸合酶基因METS的克隆及表达特性[J]. 生物技术通报, 2022, 38(4): 79-85. |
[14] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
[15] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||