[1]鲁安怀, 李艳, 王鑫, 等. 半导体矿物介导非光合微生物利用光电子新途径[J]. 微生物学通报, 2013, 40(1):190-202. [2]Lu A, Li Y, Jin S, et al. Growth of non-phototrophic micro-organisms using solar energy through minernal photocatalysis[J]. Nature Communication, 2012, 3(4):768-775. [3]Marsili E, Baron DB, Shikhare ID, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10):3968-3973. [4]王项. 微生物表征水体污染状况及还原解毒高铁离子的应用初探[D]. 长沙:中南大学, 2012. [5]Zeng CP, Lu A, Li Y, et al. Response of microbial community to sunlight catalysis of semiconductor minerals in red soil[J]. Geological Journal of China Universities, 2011, 17(1):101-106. [6]王鑫, 李艳, 鲁安怀, 等. 不同光波长下天然闪锌矿光催化作用对Acidithiobacillus ferrooxidans生长的影响[J]. 矿物学报, 2012(s1):175-176. [7]余萍, 李艳, 鲁安怀, 等. 光电子作用下土壤微生物粪产碱杆菌反硝化性能研究[J]. 岩石矿物学杂志, 2013, 32(6):761-766. [8]Shumilin IA, Nikandrov VV, Popov VO. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus, without exogenous mediators[J]. Febs Letters, 1992, 306(2-3):125-128. [9]Smirnoff N, Wheeler GL. Ascorbic acid in plants:biosynthesis and function[J]. Critical Reviews in Biochemistry and Molecular Biology, 2004, 35(4):291-314. [10]Hayase K, Tsubota H. Sedimentary humic acid and fulvic acid as surface active substances[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):947-952. [11]杨凌, 李松. 水稻土中异化铁还原对Cr(Ⅵ)还原的环境化学效应[D]. 杨凌:西北农林科技大学, 2006. [12]刘邓. 不同厌氧微生物功能群对粘土矿物结构Fe(Ⅲ)的还原作用及其矿物转变[D]. 武汉:中国地质大学, 2012. [13]Lovley DR, Coates JD, Blunt-Harris EL, et al Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448. [14]Klüpfel L, Piepenbrock A, Kappler A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3):195-200. [15]张亚萍. 腐殖质对U(Ⅵ)的吸附与腐殖质/腐败希瓦氏菌还原U(Ⅵ)的试验研究[D]. 衡阳:南华大学, 2012. [16]王佳. 水热法制备氧化钛纳米棒阵列结构及其光电性能研究[D]. 杭州:浙江大学, 2014. [17]尹诗衡, 雷淑梅, 匡同春. 非金属掺杂改性二氧化钛光催化剂研究进展[J]. 广东化工, 2007, 34(5):37-39. [18]尹佳音, 李艳红, 周婉媛, 等. 纳米TiN制备可见光活性TiO2光催化剂的研究[J]. 环境科学与技术, 2014(s1):104-107. [19]Randorn C, Irvine JTS. Synthesis and visible light photoactivity of a high temperature stable yellow TiO2 photocatalyst[J]. Journal of Materials Chemistry, 2010, 20(39):8700 -8704. [20]王金淑, 刑朋飞, 李莉莉, 等. 机械化学法N 掺杂纳米TiO2的制备与表征[J]. 北京工业大学学报, 2006, 32(7):633-637. [21] 布坎南RE, 吉本斯NE. 伯杰细菌鉴定手册[M]. 第8版. 北京:科学出版社, 1984. [22]东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. [23]陈士华, 孙强, 孙莉云, 等. 一株高产油脂微生物菌种的筛选与鉴定[J]. 河南工业大学学报:自然科学版, 2013, 34(6):65-68. [24]丁健. 铁还原菌Sphingomonas sp. DJ的分离及其降解特性的研究[D]. 大连:大连理工大学, 2014. [25]陈聪聪. 金属还原地杆菌对偶氮染料的还原研究[D]. 大连:大连理工大学, 2012. [26]傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2005, 25(12):2024-2028.
[27]滕应, 黄昌勇. 重金属污染土壤的微生物生态效应及修复研究进展[J]. 土壤与环境, 2002, 11(1):85-89. [28]赵李宁. 污染土壤生态修复技术研究[J]. 资源节约与环保, 2015, 4:149-150. [29]O’Loughlin EJ, Gorski CA, Scherer MM, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite(gamma-Fe OOH)and the formation of secondary mineralization products[J]. Environmental Science & Technology, 2010, 44(12):4570-4576. [30]Lovley DR. Dissimilatory metal reduction. [J]Annual Review of Microbiology, 1993, 47(3):263-290.
[31]O’Loughlin EJ, Boyanov MI, Flynn TM, et al. Effects of bound phosphate on the bioreduction of lepidocrocite(γ-Fe OOH)and maghemite(γ-Fe2O3)and formation of secondary minerals[J]. Environmental Science & Technology, 2013, 47(16):9157-9166. [32] 陈铭. Fe(Ⅲ)/腐殖质还原菌的分离鉴定及其还原特性研究[D]. 长沙:湖南农业大学, 2013. [33]吕明, 鲁安怀, 郝瑞霞, 等. 铁细菌利用天然金红石光生电子能量研究[J]. 岩石矿物学杂志, 2008, 27(3):212-220. [34]颜云花, 李艳, 鲁安怀, 等. 天然褐铁矿的光电化学响应及对嗜酸性氧化亚铁硫杆菌生长的影响[J]. 岩石矿物学杂志, 2009, 28(6):535-540.
[35]Zeng CP, Li Y, Lu A, et al Electrochemical interaction of a heterot-rophic bacteria Alcaligenes faecalis, with a graphite cathode[J]. Geomicrobiology, 2012, 29(3):244-249. [36]Zheng Z Y, Jin W L, Zhan X B, et al. Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis[J]. Biotechnology and Bioprocess Engineering, 2007, 12(4):359-365. [37]Lovley DR, Coates JD, Blunt-Harris EL, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448. [38]Klüpfel L, Piepenbrock A, Kappler A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3):195-200. [39]Lovley DR, Fraga JL, Blunt-Harris EL, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochimica et Hydrobiologica, 1998, 26(3):152-157. [40]王秀娟. 腐殖质类物质对Se/Te及偶氮染料的介导还原研究[D]. 大连:大连理工大学, 2011.
[41]Nevin KP, Lovley DR. Mechanisms for accessing insoluble Fe(III)oxide during dissimilatory Fe(III)reduction by Geothrix fermentans[J]. Applied and Environmental Microbiology, 2002, 68(5):2294-2299. [42]吴云当, 李芳柏, 刘同旭, 等. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53(2):278-291. [43]史其峰. 微生物多糖热凝胶在CSTR反应器中的发酵与代谢特性研究[D]. 无锡:江南大学, 2008. |