[1] Hohmann I, Bill RM, Kayingo I, et al. Microbial MIP channels[J] . Trends Microbiol, 2000, 8(1):33-38. [2] Schuurmans JA, van Dongen JT, Rutjens BPW, et al. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies[J] . Plant of the Molecular Biology, 2003, 53(5):655-667. [3] Bienert GP, Mφller AL, et al. Specific aquaporins facilitate the diffusion of the hydrogen peroxide across membranes[J] . Journal of Biological Chemistry, 2007, 282(2):1183-1192. [4] Maurel C, Verdoucq L, Luu DT, et al. Plant aquaporins:membrane channels with multiple integrated functions[J] . Annu Rev Plant Biol, 2008, 59:595-624. [5] Holm LM, Jahn TP, Mφller AL, et al. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes[J] . Pflugers Archiv:European Journal of Physiology, 2005, 450(6):415-428. [6] Hove RM, Bhave M. Plant aquaporins with non-aqua functions:deciphering the signature sequences[J] . Plant Molecular Biology, 2011, 75:413-430. [7] Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and partial characterization of a novel Mr 28, 000 integral membrane protein from erythrocytes and renal tubules[J] . Journal of Biological Chemistry, 1988, 263(30):15634-15642. [8] Schrier RW. Aquaporin-lated disorders of water homeostasis[J] . Drug News Perspect, 2007, 20(7):447-453. [9] Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins[J] . Biochimica et Biophysica Acta, 2014, 1840(5):1468-1481. [10] 钱卫国, 王丽华, 王芳, 等. 褐藻羊栖菜水通道蛋白基因SfLIP的克隆及其在淡水浸泡下的表达分析[J] . 现代农业科技, 2016, 11:228-231. [11] Anderca MI, Suga S, Furuichi T, et al. Functional identification of the glycerol transport activity of Chlamydomonas reinhardtii CrMIP1[J] . Plant Cell Physiol. 2004, 45(9):1313-1319. [12] DOE Joint Genome Institute[DB/OL] . http://222. igi. doe. gov. 2016-01-16. [13] Gustavsson S, Lebrun AS, et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J] . Plant Physiology, 2005, 139(1):287-295. [14] Danielson JAH, Johanson U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens[J] . BMC Plant Biology, 2008, 8(2):1-15. [15] Anderberg H, Danielson J, et al. Algal MIPs, high diversity and conserved motifs[J] . BMC Evolutionary Biology, 2011, 11:110. [16] Khabudaev KV, Petrova DP, Grachev MA, et al. A new subfamily LIP of the major intrinsic proteins[J] . BMC Genomics, 2014, 15(1):173. [17] A datebase dedicated to major intrinsic proteins[DB/OL] . http://mipdb. genouest. org. 2015-11-12. [18] Armbrust EV, Berges JA, Bowler C, et al. The Genome of the diatom Thalassiosira pseudonana:ecology, evolution, and metabolism[J] . Science, 2004, 306:79-86. [19] Lommer M, Specht M, Roy AS, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation[J] . Genome Biology, 2012, 13(7):R66. [20] Bowler C, Allen AE, Badger JH, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J] . Nature, 2008, 456(7219):239-244. [21] Radakovits R, Jinkerson R, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana[J] . Nature Communications, 2012, 3:686. [22] Petrova DP, Khabudaev KV, Marchenkov AM, et al. The quaporin-like protein of the diatom Syndra acus[C] . Doklady Biochemistry and Biophysics, 2013, 448(2):1-4. [23] JGI P. Multiseries v1[DB/OL] . http://genome. jgi. doe. gov/Psemu1/Psemu1. home. html. 2015-11-21. [24] JGI F. cylindrus v1[DB/OL] . http://genome. igi-psf. org/Fracy1/Fracy1. home. html. 2015-12-01. [25] Fujiyoshi Y, Mitsuoka K, de Groot BL, et al. Structure and function of water channels[J] . Current Opinion in Structural Biology, 2002, 12(4):5 09-515. [26] Tornroth-Horsefield S, Wang Y, Hedfalk K, et al. Structural mechanism of plant aquaporin gating[J] . Nature, 2006, 439(7077):688-694. [27] Dennke BM, Smith BL, Kuhaida FP, et al. Identification, purification and partial characterization of a novel Mr 28000 integral membrane protein from erythrocytes and renal tubules[J] . J Biol Chem, 1998, 263(30):15634-15642. [28] Jung JS, Preston GM, Smith BL, et al. Molecular structure of the water channel trough aquaporin CHIP[J] . Journal of Biological Chemistry, 1994, 269(20):14648-14654. [29] Gomes D, Agasse A, et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms[J] . Biochim Biophys Acta, 2009, 1788(6):1213-1228. [30] 邓鹏, 杨晓霜. 说说“水通道蛋白”[J] . 生物学教学, 2015, 40(6):60-62. [31] Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1[J] . Nature, 2010, 407(10):599-605. [32] Fu D, Libson A, Miercke LJW, et al. Structure of a glycerol conducting channel and the basis for its selectivity[J] . Science, 2000, 290:481-486. [33] Sui H, Han B-G, Lee JK, et al. Structural basis of water specific transport through the AQP1 water channel[J] . Nature, 2001, 414:872-878. [34] Thomas D, Bron P, Ranchy G, et al. Aquaglyceroporins, on channel for two molecules[J] . Biochimica et Biophysica Acta:Bioenergetics, 2002, 1555:181-186. [35] Li GW, Peng YH, Yu X, et al. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice[J] . Journal of Plant Physiology, 2008, 165(18):1879-1888. [36] Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions[J] . Science, 2007, 318(5848):245-250. [37] Christian B, Arwa AD, Andreas A, et al. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production[J] . BMC Genomics, 2013, 14:926. [38] Gao CF, Wang Y, Shen Y, et al. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes[J] . BMC Genomics, 2014, 15:582. [39] Permyakov A, Osipova S, Bondarenko N, et al. Proteins homologous to aquaporins of higher plants in the freshwater alga Ulothrix zonata(Ulotrichales, Chlorophyta)[J] . European Journal of Phycology, 2016, 51(1):99-106. [40] Bunt JS, Wood EJF. Microbiology of Antarctic sea-ice:microalgae and Antarctic sea-ice[J] . Nature, 1963, 199:1254-1255. [41] Lyon BR, Mock T. Polar Microalgae:New approaches towards understanding adaptations to an extreme and changing environment[J] . Biology, 2014, 3(1):56-80. [42] 王以斌, 张爱军, 刘芳明, 等. 南极冰藻对南极极端环境的适应性研究进展[J] . 生物技术通报, 2016, 32(10):128-134. [43] Li LL, An ML, Qu CF, et al. Molecular cloning and expression of major intrinsic protein gene in Chlamydomonas sp. ICE-L from Antarctica[J] . Extremophiles, 2017, 21(4):817-827. [44] 杨俊卿, 孔凡娜, 李超, 等. 条斑紫菜水通道蛋白PyAQP1基因的克隆及功能分析[J] . 中国海洋大学学报:自然科学版, 2016, 46(8):79-86. |