生物技术通报 ›› 2018, Vol. 34 ›› Issue (2): 54-65.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1080
王端1,2, 姚香梅1, 叶健1,2
收稿日期:
2017-12-18
出版日期:
2018-02-26
发布日期:
2018-03-12
作者简介:
王端,女,硕士研究生,研究方向:根际微生物与植物互作;E-mail:wangd@im.ac.cn
基金资助:
WANG Duan1,2, YAO Xiang-mei1, YE Jian1,2
Received:
2017-12-18
Published:
2018-02-26
Online:
2018-03-12
摘要: 近年来各种农作物病虫害的频发,以及化肥、农药滥用带来的系列农业问题的加剧,迫切需要更加环保可持续的方法实现绿色植物保护。植物病毒导致植物严重病害,素有“植物癌症”之称,因其难于防治,高度依赖化学农药防治介体昆虫。农业生态系统中,作物已有的精密调控机制,维持其与周围各种有害或有益生物进行信息交流并成功在复杂的生境中成长,病害的爆发与控制是植物-病原-昆虫之间的抗性节制-反制的博弈过程。植物在整个生活史中与生境中各种生物发生多种相互作用并彼此联系,这些互作利于或不利于其生长发育及繁殖。探索研究利用植物根际微生物群落(Microbiota),提升植物抗虫传病毒病害能力的多元生物互作机制,有助于更好的保护植物健康,提高生态文明。从介绍植物-根际微生物、植物-病毒、植物-昆虫、植物-病毒-昆虫四个互作的子系统研究现状入手,揭示目前所知的各个分系统互联互通的分子机制,并讨论围绕植物根际微生物组进行多元互作研究的趋势及重要意义,以期对有关植物与周围生物互作做较为全面和系统的介绍,从而为基于多元互作机制寻找绿色、可持续的治理植物虫传病害策略提供参考和启发新思路。
王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2): 54-65.
WANG Duan, YAO Xiang-mei, YE Jian. Research Progress on Multipartite Interactions Among Rhizosphere Microbe-Plants-Virus-Vector Insect[J]. Biotechnology Bulletin, 2018, 34(2): 54-65.
[1] Alazem M, Lin NS.Roles of plant hormones in the regulation of host-virus interactions[J]. Mol Plant Pathol, 2015, 16(5):529-540. [2] Zhou X.Advances in understanding begomovirus satellites[J]. Annu Rev Phytopathol, 2013, 51(1):357-381. [3] Luan JB, Wang YL, Wang J, et al.Detoxification activity and energy cost is attenuated in whiteflies feeding on Tomato yellow leaf curl China virus-infected tobacco plants[J]. Insect Mol Biol, 2013, 22(5):597-607. [4] Belliure B, Janssen A, Maris PC, et al.Herbivore arthropods benefit from vectoring plant viruses[J]. Ecology Letters, 2005, 8(1):70-79. [5] Li R, Weldegergis BT, Li J, et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance[J]. Plant Cell, 2014, 10. 1105/tpc. 114. 133181. [6] Zhang T, Zhao YL, Zhao JH, et al.Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants, 2016, 2:16153. [7] Calil IP, Fontes EPB.Plant immunity against viruses:antiviral immune receptors in focus[J]. Ann Bot, 2017, 119(5):711-723. [8] Moon JY, Park JM.Cross-talk in viral defense signaling in plants[J]. Frontiers in Microbiology, 2016, 7:2068. [9] Lellis AD, Kasschau KD, et al.Loss-of-Susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection[J]. Curr Biol, 2002, 12(12):1046-1051. [10] Agius C, Eamens AL, Millar AA, et al.RNA Silencing and Antiviral Defense in Plants[M]//Watson JM, Wang MB. Antiviral Resistance in Plants:Methods and Protocols. London:Humana Press, 2012:17-38. [11] Csorba T, Kontra L, Burgyán J. viral silencing suppressors:Tools forged to fine-tune host-pathogen coexistence[J]. Virology, 2015, 479-480(Supplement C):85-103. [12] Duan CG, Fang YY, et al.Suppression of Arabidopsis ARGONAU-TE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein[J]. Plant Cell, 2012, 24(1):259-274. [13] Brough CL, Gardiner WE, et al.DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts[J]. Plant Mol Biol, 1992, 18(4):703-712. [14] Raja P, Sanville BC, Buchmann RC, et al.Viral genome methylation as an epigenetic defense against geminiviruses[J]. Journal of Virology, 2008, 82(18):8997-9007. [15] Sun YW, Tee CS, Ma YH, et al.Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus[J]. Sci Rep, 2015, 5:16476. [16] Ye J, Yang J, Sun Y, et al.Geminivirus activates Asymmetric leaves 2 to accelerate cytoplasmic DCP2-Mediated mRNA turnover and weakens RNA silencing in Arabidopsis[J]. PLoS Pathogens, 2015, 11(10):e1005196. [17] Conti G, Zavallo D, Venturuzzi AL, et al.TMV induces RNA decay pathways to modulate gene silencing and disease symptoms[J]. The Plant Journal, 2017, 89(1):73-84. [18] Qu J, Ye J, Fang R.Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 2007, 81(12):6690-6699. [19] Ye J, Qu J, Mao HZ, et al.Engineering geminivirus resistance in Jatropha curcus[J]. Biotechnology for Biofuels, 2014, 7:149. [20] Li H, Ding X, Wang C, et al.Control of Tomato yellow leaf curl virus disease by Enterobacter asburiaeBQ9 as a result of priming plant resistance in tomatoes[J]. Turkish Journal of Biology, 2016, 40:150-159. [21] Abdalla OA, Bibi S, Zhang S.Application of plant growth-promoting rhizobacteria to control Papaya ringspot virus and Tomato chlorotic spot virus[J]. Archives of Phytopathology and Plant Protection, 2017, 50(11-12):584-597. [22] Reymond P, Weber H, Damond M, et al.Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis[J]. Plant Cell, 2000, 12(5):707. [23] Alborn HT, Turlings TCJ, Jones TH, et al.An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science, 1997, 276(5314):945. [24] Schmelz EA, Carroll MJ, LeClere S, et al. Fragments of ATP synthase mediate plant perception of insect attack[J]. Proc Natl Acad Sci USA, 2006, 103(23):8894-8899. [25] Alborn HT, Hansen TV, Jones TH, et al.Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles[J]. Proc Natl Acad Sci USA, 2007, 104(32):12976-12981. [26] Mattiacci L, Dicke M, Posthumus MA. beta-Glucosidase:an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc Natl Acad Sci USA, 1995, 92(6):2036-2040. [27] Guo H, Wielsch N, Hafke JB, et al.A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves[J]. Insect Biochemistry and Molecular Biology, 2013, 43(9):849-858. [28] Shinya T, Hojo Y, et al.Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice[J]. Sci Rep, 2016, 6:32537. [29] Wu J, Baldwin IT.New insights into plant responses to the attack from insect herbivores[J]. Annu Rev Genet, 2010, 44(1):1-24. [30] Eichenseer H, Mathews MC, Powell JS, et al.Survey of a salivary effector in caterpillars:glucose oxidase variation and correlation with host range[J]. J Chem Ecol, 2010, 36(8):885-897. [31] Harmel N, Letocart E, Cherqui A, et al.Identification of aphid salivary proteins:a proteomic investigation of Myzus persicae[J]. Insect Mol Biol, 2008, 17(2):165-174. [32] Wu S, Peiffer M, et al.ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses[J]. PLoS One, 2012, 7(7):e41947. [33] Stam JM, Kroes A, Li Y, et al.Plant interactions with multiple insect herbivores:from community to genes[J]. Annual Review of Plant Biology, 2014, 65:689-713. [34] De Vos M, Jander G.Myzus persicae(green peach aphid)salivary components induce defence responses in Arabidopsis thaliana[J]. Plant Cell Environ, 2009, 32(11):1548-1560. [35] Rodriguez PA, Stam R, Warbroek T, et al.Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities[J]. Mol Plant Microbe Interact, 2014, 27(1):30-39. [36] Rodriguez PA, Escudero-Martinez C.An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence[J]. Plant Physiol, 2017, 173(3):1892-1903. [37] Elzinga DA, De Vos M, Jander G.Suppression of plant defenses by a Myzus persicae(green peach aphid)salivary effector protein [J]. Mol Plant Microbe Interact, 2014, 27(7):747-756. [38] Kettles GJ, Kaloshian I.The potato aphid salivary effector Me47 Is a glutathione-S-transferase involved in modifying plant responses to aphid infestation[J]. Frontiers in Plant Science, 2016, 7:1142. [39] Pitino M1 HS. Aphid Protein effectors promote aphid colonization in a plant species-specific manner[J]. Mol Plant Microbe Interact, 2013, 26(1):130-9. [40] Atamian HS, Chaudhary R, Cin VD, et al.In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity[J]. Mol Plant Microbe Interact, 2013, 26(1):67-74. [41] Naessens E, Dubreuil G, Giordanengo P, et al.A Secreted MIF cytokine enables aphid feeding and represses plant immune responses[J]. Curr Biol, 2015, 25(14):1898-1903. [42] Luan JB, Chen W, Hasegawa DK, et al.Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects[J]. Genome Biol Evol, 2015, 7(9):2635-2647. [43] Luan JB, Shan HW, Isermann P, et al.Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts[J]. Proc Biol Sci, 2016, 283(1833):20160580. [44] Vincent TR, Avramova M, Canham J, et al.Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during Aphid Feeding[J]. Plant Cell, 2017, 29(6):1460-1479. [45] Stafford CA, Walker GP, Ullman DE.Hitching a ride:Vector feeding and virus transmission[J]. Communicative & Integrative Biology, 2012, 5(1):43-49. [46] Whitfield AE, Falk BW, et al. Insect vector-mediated transmission of plant viruses[J]. Virology, 2015, 479-480:278-289. [47] Huo Y, Liu W, Zhang F, et al.Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector[J]. PLoS Pathogens, 2014, 10(3):e1003949. [48] Chen H, Chen Q, Omura T, et al.Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus[J]. Virus Research, 2011, 160(1):389-394. [49] Chen Q, Wang H, Ren T, et al.Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity[J]. J Gen Virol, 2015, 96(4):933-938. [50] Hajano JU, Wang B, Ren Y, et al.Quantification of southern rice black streaked dwarf virus and rice black streaked dwarf virus in the organs of their vector and nonvector insect over time[J]. Virus Research, 2015, 208:146-155. [51] Matsukura K, Towata T, Yoshida K, et al.Quantitative analysis of Southern rice black-streaked dwarf virus in Sogatella furcifera and Virus Threshold for Transmission[J]. Phytopathology, 2015, 105(4):550-554. [52] Pu L, Xie G, Ji C, et al.Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers[J]. Crop Protection, 2012, 41:71-76. [53] Wei J, He YZ, Guo Q, et al.Vector development and vitellogenin determine the transovarial transmission of begomoviruses[J]. Proc Natl Acad Sci USA, 2017, 114(26):6746-6751. [54] Zhang T, Luan JB, Qi JF, et al.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor[J]. Mol Ecol, 2012, 21(5):1294-1304. [55] Jiu M, Zhou X-P, Tong L, et al.Vector-Virus Mutualism Accelera-tes Population Increase of an Invasive Whitefly[J]. PLoS One, 2007, 2(1):e182. [56] Yang JY, Iwasaki M, Machida C, et al.betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses[J]. Genes & Development, 2008, 22(18):2564-2577. [57] Li R, Weldegergis BT, Li J, et al.Virulence factors of geminivirus interact with MYC2 to subvert plant volatile-based resistance and promote vector performance[J]. Plant Cell, 2014, 26(12):4991-5008. [58] Casteel CL, Yang C, Nanduri AC, et al.The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae(green peach aphid)[J]. Plant J, 2014, 77(4):653-663. [59] Casteel C, De Alwis M, Bak A, et al.Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the aphid vector, Myzus persicae[J]. Plant Physiology, 2015, 169(1):209-218. [60] Wu D, Qi T, Li WX, et al.Viral effector protein manipulates host hormone signaling to attract insect vectors[J]. Cell Research, 2017, 27(3):402-415. [61] Abe H, Tomitaka Y, Shimoda T, et al.Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus[J]. Plant & Cell Physiology, 2012, 53(1):204-212. [62] Carmo-Sousa M, Moreno A, et al.A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread[J]. Virus Res, 2014, 186:38-46. [63] Mauck K, Bosque-Pérez NA, Eigenbrode SD, et al.Transmission mechanisms shape pathogen effects on host-vector interactions:evidence from plant viruses[J]. Functional Ecology, 2012, 26(5):1162-1175. [64] Ingwell LL, Eigenbrode SD, et al.Plant viruses alter insect behavior to enhance their spread[J]. Sci Rep, 2012, 2:578. [65] Jahan SMH, Lee G-S, Lee S, et al.Upregulation of probing- and feeding-related behavioural frequencies in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus[J]. Pest Management Science, 2014, 70(10):1497-1502. [66] Lu S, Li J, Wang X, et al.A Semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector[J]. Viruses, 2017, 9(1). [67] Stafford CA, Walker GP, Ullman DE.Infection with a plant virus modifies vector feeding behavior[J]. Proc Natl Acad Sci USA, 2011, 108(23):9350-9355. [68] Hiltner L.Uber neuere Erfahrungen und-Probleme ‘ auf dem Gebiete der Bodenbakteriologie unter besonderer Beriicksichtigung der Grundungung und Brache[J]. Arbeiten Deutsche Landwirtschaftsgesellschaft, 1904, 98:59-78. [69] Haichar FZ, Marol C, Berge O, et al.Plant host habitat and root exudates shape soil bacterial community structure[J]. The ISME Journal, 2008, 2(12):1221-1230. [70] Turner TR, Ramakrishnan K, Walshaw J, et al.Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants[J]. The ISME Journal, 2013, 7(12):2248-2258. [71] Peiffer JA, Spor A, Koren O, et al.Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proc Natl Acad Sci USA, 2013, 110(16):6548-6553. [72] Weinert N, Piceno Y, et al.PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars:many common and few cultivar-dependent taxa[J]. FEMS Microbiol Ecol, 2011, 75(3):497-506. [73] Sugiyama A, Ueda Y, Takase H, et al.Pyrosequencing assessment of rhizosphere fungal communities from a soybean field[J]. Canadian Journal of Microbiology, 2014, 60(10):687-690. [74] Carvalhais LC, Dennis PG, et al.Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities[J]. PLoS One, 2013, 8(2):e56457. [75] Badri DV, Chaparro JM, Zhang R, et al.Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome[J]. The Journal of Biological Chemistry, 2013, 288(7):4502-4512. [76] Mardukhi B, Rejali F, Daei G, et al.Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions[J]. Comptes Rendus Biologies, 2011, 334(7):564-571. [77] Saubidet MI, Fatta N, Barneix AJ.The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants[J]. Plant and Soil, 2002, 245(2):215-222. [78] Jiang Y, Wang W, Xie Q, et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175. [79] de Santiago A, García-López AM, Quintero JM, et al. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils[J]. Soil Biology and Biochemistry, 2013, 57:598-605. [80] Jin CW, He YF, Tang CX, et al.Mechanisms of microbially enhanced Fe acquisition in red clover(Trifolium pratense L.)[J]. Plant Cell Environ, 2006, 29(5):888-897. [81] Pii Y, Penn A, Terzano R, et al.Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants[J]. Plant Physiology and Biochemistry, 2015, 87(Supplement C):45-52. [82] Zamioudis C, Korteland J, Van Pelt JA, et al.Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses[J]. The Plant Journal, 2015, 84(2):309-322. [83] Mendes R, Garbeva P, Raaijmakers JM.The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5):634-663. [84] Aziz M, Nadipalli RK, Xie X, et al.Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling[J]. Frontiers in Plant Science, 2016, 7:458. [85] Hariprasad P, Chandrashekar S, et al.Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa[J]. J Basic Microbiol, 2014, 54(8):792-801. [86] Raaijmakers JM, Paulitz TC, Steinberg C, et al.The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2008, 321(1-2):341-361. [87] Haldar S, Sengupta S.Plant-microbe cross-talk in the rhizosphere:insight and biotechnological potential[J]. The Open Microbiology Journal, 2015, 9:1-7. [88] Rudrappa T, Czymmek KJ, Paré PW, et al.Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3):1547. [89] Lakshmanan V, Castaneda R, Rudrappa T, et al.Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux[J]. Planta, 2013, 238(4):657-668. [90] Liu Y, Zhang N, Qiu M, et al.Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection[J]. FEMS Microbiol Lett, 2014, 353(1):49-56. [91] Lebeis SL, Paredes SH, Lundberg DS, et al.PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250):860-864. [92] Muller DB, Vogel C, Bai Y, et al.The plant Microbiota:Systems-level insights and perspectives[J]. Annu Rev Genet, 2016, 50:211-234. [93] Jin T, Wang Y, Huang Y, et al.Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience, 2017, 6(10):1-12. |
[1] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[2] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[3] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[4] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[5] | 罗雪琮, 安梦楠, 吴元华, 夏子豪. 重组酶聚合酶扩增技术在植物病毒检测中的应用[J]. 生物技术通报, 2022, 38(2): 269-280. |
[6] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
[7] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
[8] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
[9] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
[10] | 胡亚萍, 周旭, 陈水飞, 葛晓敏, 丁晖. 植物病毒侵染对生态系统中生物因子及其相互作用的 影响[J]. 生物技术通报, 2019, 35(10): 180-188. |
[11] | 迟惠荣, 毛碧增. 植物病毒检测及脱毒方法的研究进展[J]. 生物技术通报, 2017, 33(8): 26-33. |
[12] | 关桂静, 赵恒燕, 王洪苏, 刘金香. 病毒-植物互作对介体昆虫生物学特性的影响[J]. 生物技术通报, 2017, 33(4): 44-50. |
[13] | 赵佳, 黄静, 陈哲, 聂园军, 梁宏. 西瓜枯萎病拮抗菌Lh-1的鉴定及生物防治效果研究[J]. 生物技术通报, 2017, 33(4): 130-136. |
[14] | 赵佳, 孙毅, 梁宏, 黄静, 杜建中. 现代生物技术在根际微生物群落研究中的应用[J]. 生物技术通报, 2012, 0(12): 65-70. |
[15] | 孔君;杜智欣;朱水芳;鲁洁;. 植物抗病毒分子机制的研究进展[J]. , 2012, 0(11): 15-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||