[1] Zorb C, Herbst R, Forreiter CEA.Short-term effects of salt exposure on the maize chloroplast protein pattern[J]. Proteomics, 2009, 9(17):4209-4220. [2] 张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展[J]. 草业学报, 2015(12):220-236. [3] 李倩, 王帅, 隋颂扬, 等. 农杆菌介导的ZmRLK基因转化玉米的分析[J]. 分子植物育种, 2017(1):150-154. [4] Soares A, Geilfus CM, Carpentier SC.Genotype-specific growth and proteomic responses of maize toward salt stress[J]. Front Plant Sci, 2018, 9:661. [5] Yamaguchi T, Blumwald E.Developing salt-tolerant crop plants:challenges and opportunities[J]. Trends Plant Sci, 2005, 10(12):615-620. [6] Lindemose S, O’Shea C, Jensen MK, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. Int J Mol Sci, 2013, 14(3):5842-5878. [7] Sornaraj P, Sukanya LSLM.Basic leucine zipper(bZIP)transcription factors involved in abiotic stresses A molecular model of a wheat bZIP factor and implications of its structure in function[J]. Biochimica et Biophysica Acta(BBA)-General Subjects 2016, 1860(1):46-56. [8] John G. Guan LQ, Polidoros, et al. Catalases in plants:Gene structure, properties, regulation, and expression[J]. Oxidative Stress and the Molecular Biology of Antioxidant Defenses, 1997:343-406. [9] Wang L, Zhao J, Fang YL.Gene cloning and function analysis of ABP9 protein which specifically binds to ABRE2 motif of maize Cat1 gene[J]. Chinese Science Bulletin, 2002, 47(22):1871-1875. [10] 王昌陵, 赵军, 李英慧, 等. 转录因子ABP9转化大豆(Glycine max L.)及遗传转化条件优化[J]. 中国农业科学, 2008, 41(7):1908-1916. [11] Zhang X, Wollenweber B, Jiang D, et al.Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor[J]. J Exp Bot, 2008, 59(4):839-848. [12] 张磊, 吴金霞, 董芳, 等. 抗逆转ABP9基因黑麦草和高羊茅植株的鉴定[J]. 草业科学, 2010, 27(7):72-77. [13] Zhang X, Wang L, Meng H, et al.Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Mol Biol, 2011, 75(4/5):365-378. [14] Wang C, Lu G, Hao Y, et al.ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton[J]. Planta, 2017, 246(3):453-469. [15] 邹维华. ABP9启动子克隆、功能鉴定和编码区序列转录后6个核苷酸插入修饰分析[D]. 北京:中国农业科学院研究生院, 2008. [16] 张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学, 1986, 3(3):26-28. [17] 王立丰, 王纪坤. 叶绿素荧光动力学原理及在热带作物研究中的应用[J]. 热带农业科学, 2013, 33(11):16-23. [18] Yadava P, Abhishek A, Singh R, et al.Advances in maize transformation technologies and development of transgenic maize[J]. Front Plant Sci, 2016, 7(421):1949. [19] Kumar M, Choi J, An G, et al.Ectopic expression of OsSta2 enhances salt stress tolerance in rice[J]. Front Plant Sci, 2017, 8:316. [20] Lescano CI, Martini C, Gonzalez CA, et al.Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants[J]. Plant Mol Biol, 2016, 91(4/5):581-595. [21] Mittal S, Kumari N, Sharma V.Differential response of salt stress on Brassica juncea:photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiol Biochem, 2012, 54:17-26. [22] Morant-Manceau A, Pradier E, Tremblin G.Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J]. J Plant Physiol, 2004, 161(1):25-33. [23] Mehta P, Jajoo A, Mathur S, et al.Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves[J]. Plant Physiol Biochem, 2010, 48(1):16-20. [24] Hajlaoui H, Ayeb N, Garrec JP, et al.Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize(Zea mays L.)varieties[J]. Industrial Crops and Products, 2010, 31:122-130. [25] Horie T, Karahara I, Katsuhara M.Salinity tolerance mechanisms in glycophytes:An overview with the central focus on rice plants[J]. Rice, 2012. [26] Kandoi D, Mohanty S, Tripathy BC.Overexpression of plastidic maize NADP-malate dehydrogenase(ZmNADP-MDH)in Arabidopsis thaliana confers tolerance to salt stress[J]. Protoplasma, 2018, 255(2):547-563. [27] Vijayalakshmi T, Vijayakumar AS, Kiranmai K, et al.Salt stress induced modulations in growth, compatible solutes and antioxidant enzymes response in two cultivars of safflower(Carthamus tinctorius L. Cultivar TSF1 and Cultivar SM)differing in salt tolerance[J]. American Journal of Plant Sciences, 2016:1802-1819. [28] Farhangi-Abriz S, Torabian S.Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicol Environ Saf, 2017, 137:64-70. [29] Ashraf M, Foolad MR.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59:206-216. [30] Silveira G, Viégas R, Rocha M, etal. Proline accumulation and glutamine synthetase activity are increased bysalt-induced proteolysis in cashew leaves[J]. Plant Physiol, 2003, 160:115-123. [31] Tripathi P, Rabara RC, Rushton PJ.A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 2014, 239(2):255-266. [32] Ning P, Liu C, Kang J, et al.Genome-wide analysis of WRKY transcription factors in wheat(Triticum aestivum L.)and differential expression under water deficit condition[J]. Peer J, 2017, 5:e3232. [33] Chen H, Lai Z, Shi J, et al.Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biol, 2010, 10:281. [34] Pandey SP, Somssich IE.The role of WRKY transcription factors in plant immunity[J]. Plant Physiol, 2009, 150(4):1648-1655. [35] Wang W, Vinocur B, Shoseyov O, et al.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci, 2004, 9(5):244-252. [36] Waters ER.The molecular evolution of the small heat-shock proteins in plants[J]. Genetics, 1995, 141(2):785-795. [37] Swindell WR, Huebner M, Weber AP.Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways[J]. BMC Genomics, 2007, 8:125. [38] Chen JH, Jiang HW, Hsieh EJ, et al.Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid[J]. Plant Physiol, 2012, 158(1):340-351. [39] Maxwell DP, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells[J]. Proc Natl Acad Sci USA, 1999, 96(14):8271-8276. |