生物技术通报 ›› 2019, Vol. 35 ›› Issue (11): 150-159.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0043
吴玉1, 沈永宝1, 2, 史锋厚1, 2
收稿日期:
2019-01-08
出版日期:
2019-11-26
发布日期:
2019-11-19
作者简介:
吴玉,女,博士研究生,研究方向:森林培育与林木种苗;E-mail:550868021@qq.com
基金资助:
WU Yu1, SHEN Yong-bao1, 2, SHI Feng-hou1, 2
Received:
2019-01-08
Published:
2019-11-26
Online:
2019-11-19
摘要: 植物种子是裸子植物和被子植物所特有的繁殖器官,也是人类赖以生存粮食的最主要来源。植物种子发育的过程包括形态发育和种子成熟,由一个复杂的转录因子网络管控,转录因子调控和监管整个发育过程。转录因子包含DNA结合区、寡聚化位点区、核定位信号区和转录调控区4个功能结构域,通过结构域与顺式元件相互作用调控基因的表达。研究表明,WOX家族调控胚芽发育,HAP3家族调控胚胎形态发生和细胞分化,MADS-box家族调控胚座和胚珠的发育,NAC家族调控胚珠珠被生长发育,bHLH家族调控种皮细胞的大小和形态,MYB家族是种皮发育的正调节因子。HAP家族成员LEC1 和B3超家族的AFL亚家族成员LEC2、FUSCA3、ABI3一起互相作用形成一个调控网络,共同调控种子的成熟发育。Zinc finger超家族的Dof家族调控种子的胚乳发育、贮藏蛋白的合成及脂肪含量的变化,bZIP家族调控种子贮藏基因表达,AP2/EREBP家族调控种子体积与重量、蛋白与油类积累,WRKY家族、IKU、MINI3、SHB1 基因和KLU基因调控种子体积大小。综述了植物种子发育过程中转录因子的结构和种类,分析了其作用顺序和功能,解析了种子发育的分子调控机制,展望了其研究方向和前景,以期为种子品质改良奠定理论基础和提供新的思路。
吴玉, 沈永宝, 史锋厚. 调控植物种子发育的转录因子研究进展[J]. 生物技术通报, 2019, 35(11): 150-159.
WU Yu, SHEN Yong-bao, SHI Feng-hou. Research Progress on Transcription Factors Regulating Plant Seed Development[J]. Biotechnology Bulletin, 2019, 35(11): 150-159.
[1] 刘春明, 程佑发, 刘永秀, 等. 植物种子发育的分子机理[J]. 中国基础科学, 2016, 18(2):3-13. [2] 黄娟, 陈庆富, 邓娇, 等. 植物种子发育相关转录因子研究进展[J]. 贵州师范学院学报, 2016, 32(12):48-53. [3] 连肖华, 陈坚. SUSIRI基因的生物信息学分析及亚细胞定位[J]. 中国农学通报, 2015, 31(6):128-135. [4] Viola IL, Gonzalez DH.Structure and evolution of plant homeobox genes[M]. Plant Transcription Factors, Elsevier, 2016:101-112. [5] Zhu T, Moschou PN, Alvarez JM, et al.WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce[J]. BMC Plant Biology, 2016, 16(1):9. [6] Palovaara J, de Zeeuw T, Weijers D. Tissue and organ initiation in the plant embryo:a first time for everything[J]. Annual Review of Cell and Developmental Biology, 2016, 32:47-75. [7] Kwong RW, Bui AQ, Lee H, et al.LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development[J]. The Plant Cell, 2003, 15(1):5-18. [8] Jo L, Pelletier JM, Harada JJ.Central role of the LEAFY COTYLEDON1 transcription factor in seed development[J]. Journal of Integrative Plant Biology, 2019, 61(5):564-580. [9] Pelletier JM, Kwong RW, Park S, et al.LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proceedings of the National Academy of Sciences, 2017, 114(32):E6710-E6719. [10] Hu Y, Zhou L, Huang M, et al.Gibberellins play an essential role in late embryogenesis of Arabidopsis[J]. Nature Plants, 2018, 4(5):289-298. [11] Boulard C, Thévenin J, Tranquet O, et al.LEC1(NF-YB9)directly interacts with LEC2 to control gene expression in seed[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2018, 1861(5):443-450. [12] Orłowska A, Igielski R, łagowska K, et al.Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 2017, 129(1):119-132. [13] Huang M, Hu Y, Liu X, et al.Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development[J]. Frontiers in Plant Science, 2015(6):955. [14] 芦旺, 席万鹏. MADS-box转录因子在果实成熟及品质形成中的调控作用研究进展[J]. 园艺学报, 2018, 45(9):1802-1812. [15] Angenent GC, Franken J, Busscher M, et al.A novel class of MADS box genes is involved in ovule development in petunia[J]. The Plant Cell, 1995, 7(10):1569-1582. [16] Chen Y, Tsai W.The Function of C/D-class MADS box genes in orchid gynostemium and ovule development[M]. Orchid Biotechnology III, World Scientific, 2017:289-308. [17] Suárez Baron H, Pérez Mesa P, Ambrose BA, et al.Deep into the aristolochia flower:Expression of C, D, and E-class genes in Aristolochia fimbriata(Aristolochiaceae)[J]. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution, 2017, 328(1-2):55-71. [18] Ehlers K, Bhide AS, Tekleyohans DG, et al.The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana[J]. PLoS One, 2016, 11(10):e0165075. [19] 李桂玲, 李思云, 刘卫群. 转录因子NAC 及其在植物生长发育中的作用[J]. 分子植物育种, 2019, 17(3):811-826. [20] 马艺文, 孟令斌, 刘宁宁, 等. NAC转录因子国内研究进展[J]. 农技服务, 2017, 34(16):1-2. [21] 王春雨, 张茜. 植物NAC 转录因子功能研究进展[J]. 生物技术通报, 2018, 34(11):8-14. [22] Tadashi K, Nobutaka M, Masaru OT, et al.NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis[J]. Plant Cell, 2008, 20(10):2631-2642. [23] Christianson JA, Wilson IW, Llewellyn DJ, et al.The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment.[J]. Plant Physiology, 2010, 149(4):1724-1738. [24] 黄娟, 邓娇, 朱丽伟, 等. 植物种子发育相关NAC家族转录因子研究进展[J]. 种子, 2017, 36(11):51-55. [25] 朱娉, 冯波, 徐智斌, 等. 小麦籽粒蛋白含量相关基因NAM新等位变异的挖掘[J]. 麦类作物学报, 2016, 36(7):866-871. [26] Waters BM, Uauy C, Dubcovsky J, et al.Wheat(Triticum aestivum)NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain[J]. Journal of Experimental Botany, 2009, 60(15):4263-4274. [27] Uauy C, Distelfeld A, Fahima T, et al.A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803):1298-1301. [28] 吴丹, 董剑, 要燕杰, 等. 小麦中国春NAM转录因子Gpc-1和Gpc-2灌浆期时空表达模式分析[J]. 中国农业科学, 2015, 48(7):1262-1276. [29] 胡喜贵, 伍碧华. 伊斯帕汗小麦 NAM-B1 基因序列与蛋白质含量变异的分析[J]. 麦类作物学报, 2017, 37(3):295-300. [30] 于冰, 田烨, 李海英, 等. 植物bHLH 转录因子的研究进展[J]. 中国农学通报, 2019, 35(9):75-80. [31] 冯磊, 石元豹, 汪贵斌, 等. 银杏bHLH家族转录因子生物信息学及表达分析[J]. 江苏农业学报, 2019, 35(2):400-411. [32] Kondou Y, Nakazawa M, Kawashima M, et al.RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth[J]. Plant Physiology, 2008, 147(4):1924-1935. [33] Feng F, Qi W, Lv Y, et al.OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism[J]. The Plant Cell, 2018, 30(2):375-396. [34] Tanabe N, Noshi M, Mori D, et al.The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana[J]. Journal of Plant Research, 2019, 132(1):93-105. [35] Li X, Chen L, Hong M, et al.A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa[J]. PLoS One, 2012, 7(9):e44145. [36] Gonzalez A, Brown M, Hatlestad G, et al.TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway[J]. Developmental Biology, 2016, 419(1):54-63. [37] Padmaja LK, Agarwal P, Gupta V, et al.Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB)[J]. Theoretical and Applied Genetics, 2014, 127(2):339-347. [38] 牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8):2050-2059. [39] Matsui K, Hiratsu K, Koyama T, et al.A chimeric AtMYB23 repressor induces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilage on seed coats in Arabidopsis.[J]. Plant Cell Physiology, 2005, 46(1):147-155. [40] Luo X, Zhao H, Yao P, et al.An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and Proanthocyanidins from Tartary buckwheat[J]. Journal of Plant Growth Regulation, 2018, 37(1):76-84. [41] Herniter IA, Muñoz-Amatriaín M, Lo S, et al.Identification of candidate genes controlling black seed coat and pod tip color in cowpea(Vigna unguiculata[L. ]Walp)[J]. G3:Genes, Genomes, Genetics, 2018, 8(10):3347-3355. [42] 李卫星, 崔慧, 何青松, 等. 裸子植物种子发育过程及基因调控研究进展[J]. 种子, 2016, 35(6):50-56. [43] 孙超, 唐天向, 唐伟杰, 等. 植物基因印迹及其对种子发育的影响[J]. 农业科学与技术:英文版, 2017, 18(6):984-987. [44] Kagaya Y, Toyoshima R, Okuda R, et al.LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3[J]. Plant and Cell Physiology, 2005, 46(3):399-406. [45] Mu J, Tan H, Zheng Q, et al.LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(2):1042-1054. [46] Junker A, Bäumlein H.Multifunctionality of the LEC1 transcription factor during plant development[J]. Plant Signaling & Behavior, 2012, 7(12):1718-1720. [47] Tan H, Yang X, Zhang F, et al.Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds[J]. Plant Physiology, 2011, 156(3):1577-1588. [48] Baud S, Kelemen Z, Thévenin J, et al.Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed[J]. Plant Physiology, 2016, 171(2):1099-1112. [49] Grimault A, Gendrot G, Chaignon S, et al.Role of B3 domain transcription factors of the AFL family in maize kernel filling[J]. Plant Science, 2015, 236:116-125. [50] Roscoe T, Guilleminot J, Bessoule J, et al.Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(6):1215-1228. [51] Fatihi A, Boulard C, Bouyer D, et al.Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds[J]. Plant Science, 2016, 250:198-204. [52] Kagaya Y, Toyoshima R, Okuda R, et al.LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3[J]. Plant and Cell Physiology, 2005, 46(3):399-406. [53] Boulard C, Fatihi A, Lepiniec L, et al.Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits[J]. Elsevier, 2017, 1860(10):1069-1078. [54] 张雪, 尹悦佳, 范贝, 等. 植物Dof转录因子的结构特点及功能研究进展[J]. 作物杂志, 2016(2):14-20. [55] Kushwaha H, Jillo KW, Singh VK, et al.Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof(DNA binding with One Finger)transcription factor gene-specific primers[J]. Plant Systematics and Evolution, 2015, 301(2):833-840. [56] Gupta S, Pathak RK, Gupta SM, et al.Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L.[J]. 3 Biotech, 2018, 8(2):82. [57] 王志坤, 常健敏, 李丹丹, 等. 转 GmDof11 基因高油转基因大豆的鉴定及主要农艺性状调查[J]. 作物杂志. 2014, 2:39-42. [58] Zhang Y, Chen Y, Wang M, et al.Functional analysis of Dof transcription factors controlling heading date and PPDK gene expression in rice[D]. Leiden University Dissertation, 2015:50-84. [59] 程殿君, 边境, 贺琳, 等. 玉米ZmbZIP76基因调控非生物胁迫反应的分子机制[C]. 2018中国作物学会学术年会论文摘要集, 2018:58. [60] Jakoby M, Weisshaar B, Dröge-Laser W, et al.bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111. [61] Finkelstein RR, Gampala SS, Rock CD.Abscisic acid signaling in seeds and seedlings[J]. The Plant Cell, 2002, 14(1):S15-S45. [62] Lara P, Oñate-Sánchez L, Abraham Z, et al.Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2[J]. Journal of Biological Chemistry, 2003, 278(23):21003-21011. [63] Gacek K, Bartkowiak-Broda I, Batley J.Genetic and molecular regulation of Seed Storage Proteins(SSPs)to improve protein nutritional value of oilseed rape(Brassica napus L. )seeds[J]. Frontiers in Plant Science, 2018, 9:890. [64] 张麒, 陈静, 李俐, 等. 植物AP2/ERF 转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8):1-7. [65] Rao G, Sui J, Zeng Y, et al.Genome-wide analysis of the AP2/ERF gene family inSalix arbutifolia[J]. FEBS Open Bio, 2015, 5(1):132-137. [66] Irish V.The ABC model of floral development[J]. Current Biology, 2017, 27(17):R887-R890. [67] Wang C, Wang H, Zhang J, et al.A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination[J]. Science in China Series C:Life Sciences, 2008, 51(4):336-345. [68] Jiang L, Ma X, Zhao S, et al.The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size[J]. The Plant Cell, 2019, 31(1):17-36. [69] Ohto M, Fischer RL, Goldberg RB, et al.Control of seed mass by APETALA2[J]. Proceedings of the National Academy of Sciences, 2005, 102(8):3123-3128. [70] Zhao L, Xu S, Chai T, et al.OsAP2-1, an AP2-like gene from Oryza sativa, is required for flower development and male fertility[J]. Sexual Plant Reproduction, 2006, 19(4):197-206. [71] Ohto M, Floyd SK, Fischer RL, et al.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J]. Sexual Plant Reproduction, 2009, 22(4):277-289. [72] Cernac A, Andre C, Hoffmann-Benning S, et al.WRI1 is required for seed germination and seedling establishment[J]. Plant Physiology. 2006, 141(2):745-757. [73] Penfield S, Li Y, Gilday AD, et al.Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm[J]. The Plant Cell, 2006, 18(8):1887-1899. [74] Lasserre E, Jobet E, Llauro C, et al.AtERF38(At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization[J]. Plant Physiology and Biochemistry, 2008, 46(12):1051-1061. [75] 陈彩慧, 伍艳芳, 肖蓉, 等. 樟树WRKY转录因子的克隆与表达分析[J]. 分子植物育种, 2018, 16(15):4872-4879. [76] Garcia D, Gerald J NF, Berger F.Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J]. The Plant Cell, 2005, 17(1):52-60. [77] Johnson CS, Kolevski B, Smyth DR.TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. The Plant Cell, 2002, 14(6):1359-1375. [78] Amato A, Cavallini E, Zenoni S, et al.A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis[J]. Frontiers in Plant Science, 2017, 7:1979. [79] 张雪晶, 江文波, 庞永珍. 植物种子大小调控机制的研究进展[J]. 植物生理学报, 2016, 52(7):998-1010. [80] Wang A, Garcia D, Zhang H, et al.The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J]. Plant J, 2010, 63(4):670-679. [81] Zhou Y, Zhang X, Kang X, et al.SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development[J]. The Plant Cell, 2009, 21(1):106-117. [82] Xiao YG, Sun QB, Kang XJ, et al.SHORT HYPOCOTYL UNDER BLUE1 or HAIKU2 mixepression alters canola and Arabidopsis seed development[J]. New Phytologist, 2016, 209(2):636-649. [83] Meng L, Wang Y, Loake GJ, et al.Seed embryo development is regulated via an AN3-MINI3 gene cascade[J]. Frontiers in Plant Science, 2016, 7:1645. [84] Anastasiou E, Kenz S, Gerstung M, et al.Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling[J]. Developmental Cell, 2007, 13(6):843-856. [85] Zhang Y, Du L, Xu R, et al.Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana[J]. The Plant Cell, 2015, 27(3):620-632. [86] Zhao B, Dai A, Wei H, et al.Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean[J]. Plant Molecular Biology, 2016, 90(1-2):33-47. [87] Adamski NM, Anastasiou E, Eriksson S, et al.Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling[J]. Proceedings of the National Academy of Sciences, 2009, 106(47):20115-20120. [88] 靳进朴, 郭安源, 何坤, 等. 物转录因子分类、预测和数据库构建[J]. 生物技术通报. 2015, 31(11):68-77. [89] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法[J]. 生物技术通讯. 2013, 24(1):118-123. [90] 秦玉芝, 邢铮, 潘妃, 等. 马铃薯光响应StR2R3-MYB1基因的克隆与表达分析[J]. 湖南农业大学学报:自然科学版, 2015, 41(4):378-384. [91] Ghanbari M, Packirisamy M, Geitmann A.Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip(FiLoC)[J]. Technology. 2018, 6(3-04):101-109. |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[12] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[13] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[14] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[15] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||