[1] Oyiga BC, Ogbonnaya FC, Sharma RC, et al.Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat[J]. Theoretical and Applied Genetics, 2019, 132(2):323-346. [2] 郭世乾, 崔增团, 傅亲民. 甘肃省盐碱地现状及治理思路与建议[J]. 中国农业资源与区划, 2013, 34(4):75-79. [3] 赵振勇, 张科, 王雷, 等. 盐生植物对重盐渍土脱盐效果[J]. 中国沙漠, 2013, 33(5):1420-1425. [4] Zhao K, Song J, Feng G, et al.Species, types, distribution, and economic potential of halophytes in China[J]. Plant and Soil, 2011, 342(1-2):495-509. [5] Štefanić PP, Koffler T, Adler G, et al.Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels[J]. PLoS One, 2013, 8(12):e82548. [6] Lee SY, Seok HY, Tarte VN, et al.The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses[J]. Plant Cell Reports, 2014, 33(6):837-847. [7] 中国植物志编辑委员会. 中国植物志(第67卷第一册)[M]. 北京:中国科学出版社, 1999. [8] Wang H, Li J, Tao W, et al.Lycium ruthenicum studies:Molecular biology, phytochemistry and pharmacology[J]. Food Chemistry, 2018, 240:759-766. [9] Lv X, Wang C, Cheng Y, et al.Isolation and structural characteri-zation of a polysaccharide LRP4-A from Lycium ruthenicum Murr [J]. Carbohydrate Research, 2013, 365:20-25. [10] Li YH, Zou XB, Shen TT, et al.Determination of geographical origin and anthocyanin content of black goji berry(Lycium ruthenicum Murr. )using near-infrared spectroscopy and chemometrics[J]. Food Analytical Methods, 2017, 10(4):1034-1044. [11] 刘丽萍, 张东智, 张冲, 等. 黑果枸杞抗逆性及栽培育种研究进展[J]. 生物技术通报, 2016, 32(10):118-127. [12] 马彦军, 许晶晶, 韩谨如, 等. 3个种群黑果枸杞叶片解剖结构的耐盐性分析[J]. 干旱区资源与环境, 2018, 32(4):100-105. [13] 张荣梅, 马彦军. NaCl胁迫对黑果枸杞叶片生理指标的影响[J]. 甘肃农业大学学报, 2018, 52(4):110-157. [14] 武燕, 尹建军, 李善家. 黑河下游荒漠植物黑果枸杞叶片性状特征及其盐分响应[J]. 生态学杂志, 2017, 36(5):1277-1284. [15] Chen JH, Zhang DZ, Zhang C, et al.Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum[J]. Journal of Zhejiang University-Science(Biomedicine & Biotechnology), 2017, 18(11):1002-1021. [16] 严莉, 王翠平, 陈建伟, 等. 基于转录组信息的黑果枸杞 MYB 转录因子家族分析[J]. 中国农业科学, 2017, 50(20):3991-4002. [17] 王翠平, 陈建伟, 严莉, 等. 黑果枸杞R1-MYB 转录因子基因的克隆及表达分析[J]. 中草药, 2018, 49(1):203-210. [18] Gruber MY, Xia J, Yu M, et al.Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population[J]. Genome, 2016, 60(2):104-127. [19] Mansouri M, Naghavi MR, Alizadeh H, et al.Transcriptomic analysis of Aegilops tauschii during long-term salinity stress[J]. Functional & Integrative Genomics, 2019, 19(1):13-28. [20] Postnikova OA, Shao J, Nemchinov LG.Analysis of the alfalfa root transcriptome in response to salinity stress[J]. Plant and Cell Physiology, 2013, 54(7):1041-1055. [21] Bolger AM, Lohse M, Usadel B.Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120. [22] Langmead B, Salzberg SL.Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4):357-359. [23] Trapnell C, Williams BA, Pertea G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515. [24] Grabherr MG, Haas BJ, Yassour M, et al.Trinity:reconstructing a full-length transcriptome without a genome from RNA-Seq data[J]. Nature Biotechnology, 2011, 29(7):644-652. [25] 贾新平, 孙晓波, 邓衍明, 等. 鸟巢蕨转录组高通量测序及分析[J]. 园艺学报, 2014, 41(11):2329-2341. [26] 张少平, 洪建基, 邱珊莲, 等. 紫背天葵高通量转录组测序分析[J]. 园艺学报, 2016, 43(5):935-946. [27] Stitt M, Sulpice R, Keurentjes J.Metabolic networks:how to identify key components in the regulation of metabolism and growth[J]. Plant Physiology, 2010, 152(2):428-444. [28] 赵路遥. 盐胁迫下滨柃(Eurya emarginata)幼苗的生理响应和转录组分析[D]. 舟山:浙江海洋大学, 2017. [29] 曹盈. 盐生植物辽宁碱蓬(Suaeda liaotungensis K. )转录组测序及分析[D]. 大连:辽宁师范大学, 2013. [30] 汤晓丽. 海滨锦葵盐胁迫转录组分析和抗盐基因研究[D]. 北京:中国科学院大学, 2016. [31] 马进, 郑刚. 利用转录组测序技术鉴定紫花苜蓿根系盐胁迫应答基因[J]. 核农学报, 2016, 30(8):1470-1479. [32] 张倩倩. 短期盐胁迫下中国石竹幼苗响应的转录组测序、组装和分析[D]. 呼和浩特:内蒙古农业大学, 2017. [33] Powell W, Morgante M, Andre C, et al.The comparison of RFLP, RAPD, AFLP and SSR(microsatellite)markers for germplasm analysis[J]. Molecular Breeding, 1996, 2(3):225-238. [34] Song QJ, Shi JR, Singh S, et al.Development and mapping of microsatellite(SSR)markers in wheat[J]. Theoretical and Applied Genetics, 2005, 110(3):550-560. [35] Eujayl I, Sorrells ME, Baum M, et al.Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theoretical and Applied Genetics, 2002, 104(2-3):399-407. [36] 梅利那, 范付华, 崔博文, 等. 基于马尾松转录组的 SSR 分子标记开发及种质鉴定[J]. 农业生物技术学报, 2017, 25(6):991-1002. [37] 张庆田, 李晓艳, 杨义明, 等. 蓝靛果忍冬转录组 SSR 信息分析及其分子标记开发[J]. 园艺学报, 2016, 43(3):557-563. [38] 李娜, 姚民, 梅兰菊, 等. 基于山桐子转录组序列的 SSR 分子标记开发[J]. 应用与环境生物学报, 2017, 23(5):952-958. [39] 尹跃, 安巍, 赵建华, 等. 黑果枸杞转录组 SSR 信息分析及分子标记开发[J]. 浙江农林大学学报, 2019, 36(2):422-428. |