[1] 李婧, 周艳文, 陈森, 等. 我国土壤镉污染现状、危害及其治理方法综述[J]. 安徽农学通报, 2015, 21(24):104-107. [2] Kováčik J, Babula P, Klejdus B, et al.Comparison of oxidative stress in four Tillandsia species exposed to cadmium[J]. Plant Physiology & Biochemistry, 2014, 80:33-40. [3] Choppala G, Ullah S, Bolan N, et al.Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J]. Critical Reviews in Plant Sciences, 2014, 33(5):374-391. [4] Rizwan M, Ali S, Adrees M, et al.A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182(5):90-105. [5] Chaney RL.How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers[J]. Current Pollution Reports, 2015, 1(1):13-22. [6] Huguet S, Bert V, Laboudigue A, et al.Cd speciation and localization in the hyperaccumulator Arabidopsis halleri[J]. Environmental & Experimental Botany, 2012, 82(5):54-65. [7] Verbruggen N, Hermans C, Schat H.Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist, 2009, 181(4):759-776. [8] 薛洪宝, 常华兰, 陶兆林, 等. 玉米发芽过程中Cd和硫醇化合物相互作用的研究[J]. 农业环境科学学报, 2011, 30(5):824-829. [9] Cobbett CS.Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiology, 2000, 123(3):825-832. [10] Khan NA, Singh S, Umar S.Sulfur assimilation and abiotic stress in plants[M]. Berlin:Springer-Verlag, 2008. [11] Lou L, Kang J, Pang H, et al.Sulfur protects pakchoi(Brassica chinensis L.)seedlings against cadmium stress by regulating ascorbate-glutathione metabolism[J]. International Journal of Molecular Sciences, 2017, 18(8):1628. [12] 洪立洲, 王茂文, 丁海荣, 等. NaCl胁迫对马齿苋光合作用及叶绿素荧光特性的影响[J]. 西北植物学报, 2011, 31(12):2516-2521. [13] 陈艳. 不同苋菜品种对重金属累积差异和机制初探[D]. 广州:暨南大学, 2013. [14] Arnon DI.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15. [15] 万雪琴, 张帆, 夏新莉, 等. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44(6):73-78. [16] 谭明明, 贺忠群, 郑万刚. 嫁接对铜胁迫下甜瓜幼苗光合特性与矿质元素吸收的影响[J]. 华北农学报, 2014, 29(5):186-192. [17] 张帆, 万雪琴, 翟晶. 镉处理下增施氮对杨树叶绿素合成和叶绿体超微结构的影响[J]. 核农学报, 2013, 28(3):485-491. [18] 梁泰帅, 刘昌欣, 康靖全, 等. 硫对镉胁迫下小白菜镉富集、光合速率等生理特性的影响[J]. 农业环境科学学报, 2015, 34(8):1455-1463. [19] 洪立洲, 王茂文, 丁海荣, 等. NaCl胁迫对马齿苋光合作用及叶绿素荧光特性的影响[J]. 西北植物学报, 2011, 31(12):2516-2521. [20] Zhang SY, Zhang GC, Liu X, et al.The responses of photosynthetic rate and stomatal conductance of Fraxinus rhynchophylla to differences in CO2 concentration and soil moisture[J]. Photosynthetica, 2013, 51(3):359-369. [21] Farquhar GD, Sharkey TD.Stomatal conductance and photosynth-esis[J]. Annual Review of Plant Physiology, 1982, 33(1):317-345. [22] Khan NA, Mohd A, Per TS, et al.Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard[J]. Frontiers in Plant Science, 2016, 7:1628. [23] Masood A, Khan MIR, Fatma M, et al.Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard[J]. Plant Physiology and Biochemistry, 2016, 104:1-10. [24] Hendrickson L, Furbank RT, Chow WS.A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1):73-81. [25] Losciale P, Hendrickson L, Grappadelli LC, et al.Quenching partitioning through light-modulated chlorophyll fluorescence:A quantitative analysis to assess the fate of the absorbed light in the field[J]. Environmental and Experimental Botany, 2011, 73(1):73-79. [26] Demmig-Adams B, Adams III WW, Barker DH, et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum, 2008, 98(2):253-264. [27] Boscaiu M, Bautista I, Donat P, et al.Plant responses to abiotic stress[J]. Current Opinion in Biotechnology, 2011, 22(3):S130-S130. [28] Schützendübel A, Polle A.Plant responses to abiotic stresses:Heavy metal-induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53(372):1351-1365. [29] Li L, Ai S, Li Y, et al.Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice[J]. Journal of Plant Growth Regulation, 2017, 37(2):602-611. [30] Laing W, Greer D, Sun O, et al.Physiological impacts of Mg deficiency in Pinus radiata:Growth and photosynthesis[J]. New Phytologist, 2000, 146(1):47-57. [31] Popelkova H, Boswell N, Yocum C.Probing the topography of the photosystem II oxygen evolving complex:PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant[J]. Photosynthesis Research, 2011, 110(2):111-121. [32] Lysenko EA, Klaus AA, Kartashov AV, et al.Distribution of Cd and other cations between the stroma and thylakoids:a quantitative approach to the search for Cd targets in chloroplasts[J]. Photosynthesis Research, 2018, 139(1/3):337-358. [33] Matraszek R, Chwil S, Hawrylak-Nowak B, et al.Effect of sulphur and cadmium on macronutrient balance in spring wheat[J]. Proceedings of the National Academy of Sciences of the USA, 2015, 87(3):927-936. [34] Matraszek R, Hawrylak-Nowak B, Chwil S, et al.Interaction between cadmium stress and sulphur nutrition level on macronutrient status of Sinapis alba L.[J]. Water, Air, & Soil Pollution, 2016, 227(9):355. [35] Matraszek R, Hawrylak-Nowak B, Chwil S, et al.Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition[J]. Journal of Environmental Management, 2016, 180:24-34. |