[1] Pan C, Zhao H, Zhao X, et al.Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization[J]. PLoS One, 2013, 8(1):e54827. [2] Evelin H, Devi TS, Gupta S, et al.Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis:current understanding and new challenges[J]. Frontiers in Plant Science, 2019, 10:470. [3] 朱洋洋, 马林. 中国草原保护与建设的理性思考[J]. 大连民族大学学报, 2018, 20(4):323-327. [4] 郭继勋, 姜世成, 孙刚. 松嫩平原盐碱化草地治理方法的比较研究[J]. 应用生态学报, 1998(4):90-93. [5] 冀永华. 草原保护与草地“三化”治理技术研究[J]. 中国畜禽种业, 2018, 14(11):53-54. [6] 麻爽. 盐碱化羊草草地固氮微生物的特性研究[D]. 哈尔滨:东北师范大学, 2016. [7] 宋丽茹. 松嫩盐碱化草地土壤功能性纤维素降解菌特性的研究[D]. 哈尔滨:东北师范大学, 2019. [8] 王悦, 杨卓妮娜, 司雨凡, 等. 围封禁牧和适度利用对盐碱化草地改良的研究进展[J]. 黑龙江畜牧兽医, 2019(15):47-50. [9] Zhao X, Zhong Y, Pan C.Changes in soil nutrients and carbon properties in relationto grassland salinization[C]//IOP Conference Series:Earth and Environmental Science. IOP Publishing, 2018, 186(3):012050. [10] Litalien A, Zeeb B.Curing the earth:A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Science of the Total Environment, 2019:698:134235. [11] Gerhardt KE, Maxneill GJ, Gerwing PD, et al.Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria(PGPR)to enhance phytoremediation[M]//Phytoremediation. Cham, Springer, 2017:19-51. [12] 李洪影. 生物措施对松嫩平原盐碱退化草地改良效果的研究[D]. 哈尔滨:东北农业大学, 2014. [13] 杨国伟. 紫花苜蓿与无芒雀麦混播对盐碱化草地改良效果的研究[D]. 哈尔滨:东北农业大学, 2011. [14] Novikova AF, Gololobova AV.Reclamation of solonetzes in the dark chestnut subzone of kustanay oblast[J]. Pochvov Edenie, 1976(8):97-106. [15] Li JS, Hussain T, Feng XH, et al.Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses[J]. Ecological Engineering, 2019, 140:105593. [16] 闫留华, 陈敏, 王宝山. NaCl胁迫对2种表型盐地碱蓬种子萌发的渗透效应和离子效应研究[J]. 西北植物学报, 2008(4):4718-4723. [17] 乔永旭, 张永平, 陈超, 等. 温度、光照、盐分和pH值对碱蓬种子萌发的影响[J]. 北方园艺, 2009(11):60-63. [18] 李洪山, 封功能, 邵荣, 等. 盐地碱蓬作物化利用探究进展[J]. 现代园艺, 2017(8):126-127. [19] 祁通, 孙阳讯, 黄建, 等. 两种盐生植物在南北疆地区的适生性及吸盐能力[J]. 中国土壤与肥料, 2017(1):144-148. [20] 梁飞, 田长彦, 田明明, 等. 追施氮肥对盐地碱蓬生长及其改良盐渍土效果研究[J]. 草业学报, 2013, 22(3):234-240. [21] 黄玮, 李志刚, 乔海龙, 等. 旱盐互作对盐地碱蓬生长及其渗透调节物质的影响[J]. 中国生态农业学报, 2008(1):173-178. [22] 张杨. 羊草对盐碱胁迫响应的研究进展[J]. 现代畜牧科技, 2019(4):8-9. [23] 陈旭, 焦德志. 东北草地羊草对NaCl胁迫的生理响应[J]. 齐齐哈尔大学学报:自然科学版, 2019, 35(5):48-51. [24] Lin JX, Li ZL, Wang Y N, et al.Effects of various mixed salt-alkaline stress conditions on seed germination and early seedling growth of Leymus chinensis from Songnen Grassland of China[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(1):154-159. [25] 申忠宝, 潘多锋, 王建丽, 等. 混合盐碱胁迫对5种禾草种子萌发及幼苗生长的影响[J]. 草地学报, 2012, 20(5):914-920. [26] Bao GZ, Guan SC, An PP.The effect of alkali-saline stress on the growth of rhizome ofAneurolepidium chinense[C]//2011 Second International Conference on Mechanic Automation and Control Engineering. IEEE, 2011:2703-2706. [27] 梁正伟, 王志春, 马红媛, 等. 利用耐逆植物改良松嫩平原高pH盐碱土研究进展(英文)[J]. 吉林农业大学学报, 2008(4):517-528. [28] Ma HY, Yang HY, Liang ZW, et al.Effects of 10-year management regimes on the soil seed bank in saline-alkaline grassland[J]. PLoS One, 2015, 10(4):e0122319. [29] 仝淑萍, 梁正伟, 关法春, 等. 松嫩平原苏打盐碱地羊草人工移栽草地生物多样性特征和生物量[J]. 草地学报, 2019, 27(1):22-27. [30] 陈小芳, 徐化凌, 于德花等. 两种紫花苜蓿苗期耐盐特性的初步研究[J]. 农业科技通讯, 2019(6):138-142. [31] 潘香逾, 李瑜婷, 刘立军, 等. 盐胁迫下14种绿肥植物种子萌发特性及耐盐性评价[J]. 草原与草坪, 2019, 39(3):98-105. [32] 杨洪涛, 安丰华, 赵丹丹, 等. 土壤盐碱化对紫花苜蓿(Medicago sativa L. )生物学特征的影响[J]. 土壤与作物, 2019, 8(3):242-250. [33] 潘多锋, 申忠宝, 王建丽, 等. 紫花苜蓿与无芒雀麦混播对松嫩平原盐碱化草地土壤改良效果研究[J]. 黑龙江农业科学, 2012(10):127-131. [34] 李景欣, 杨帆, 李洪影, 等. 覆盖秸秆和种植牧草对盐碱化草地的影响[J]. 作物杂志, 2013(3):83-86. [35] 牛壮, 崔新, 贺文骅, 等. 覆盖秸秆对松嫩草地补播耐盐碱牧草生长及草地土壤微生物数量的影响[J]. 黑龙江畜牧兽医, 2015(19):143-146. [36] 王彦庆, 李洪影, 李冰, 等. 盐碱草地补播虎尾草、野大麦同时覆盖秸秆对土壤酶活性的影响[J]. 草地学报, 2015, 23(4):738-743. [37] 阎南南, 崔国文, 张茜, 等. 覆盖秸秆和补播牧草对松嫩退化盐碱草地土壤盐离子含量的影响[J]. 中国草地学报, 2015, 37(2):112-116. [38] 郭文芳, 农万廷, 李刚强, 等 . 植物耐盐碱基因工程研究进展[J]. 生物技术通报, 2015, 31(7):11-17. [39] Li SX, Liu JL, An Y, et al.MsPIP2;2, a novel aquaporin gene from Medicago sativa, confers salt tolerance in transgenic Arabidopsis[J]. Environmental and Experimental Botany, 2019, 165:39-52. [40] Su JH, Bai TH, Wang F, et al.Overexpression of Arabidopsis H+-pyrophosphatase improves the growth of alfalfa under long-term salinity, drought conditions and phosphate deficiency[J]. Czech Journal of Genetics and Plant Breeding, 2019, 55(4):156-161. [41] 张昆, 李明娜, 曹世豪, 等. 牧草与草坪草耐盐基因工程研究进展[J]. 中国草地学报, 2017, 39(2):96-104. [42] Vecchio MC, Bolanos VA, Golluscio RA, et al.Rotational grazing and exclosure improves grassland condition of the halophyticsteppe in Flooding Pampa(Argentina)compared with continuous grazing[J]. Rangeland Journal, 2019, 41(1):1-12. [43] Vecchio MC, Golluscio RA, Rodriguez AM, et al.Improvement of saline-sodic grassland soils properties by rotational grazing in argentina[J]. Rangeland Ecology & Management, 2018, 71(6):807-814. [44] 乔荣, 崔向新, 吕新丰, 等. 围封禁牧对退化草原土壤性状的影响[J]. 水土保持通报, 2014, 34(5):162-165. [45] Taboada MA, Rubio G, Chaneton EJ, et al.Grazing impacts on soil physical, chemical, and ecological properties in forage production systems[J]. Soil Management:Building a Stable Base for Agriculture, 2011, 20:301-320. [46] Jacobo EJ, Rodriguez AM, Bartoloni N, et al.Rotational grazing effects on rangeland vegetation at a farm scale[J]. Rangeland Ecology & Management, 2006, 59(3):249-257. [47] Wei Y, Zhang SH.Haloalkaliphilic fungi and their roles in the treatment of saline-alkali soil[M]// Fungi in extreme environments:Ecological role and biotechnological significance. 2019:535-557. [48] Romanoarmada N, Yanezyazlle MF, Irazusta V, et al.Potential of bioremediation and PGP traits in streptomyces as strategies for bio-reclamation of salt-affected soils for agriculture[J]. Pathogenetics, 2020, 9(2):117. [49] 俞冰倩, 朱琳, 魏巍. 我国盐碱土土壤微生物研究及其展望[J]. 土壤与作物, 2019, 8(1):60-69. [50] Wei Y, Zhang SH.Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi:applications for saline-alkaline remediation[J]. Extremophiles, 2018, 22(2):155-164. [51] 曲发斌, 于明礼, 张柱岐, 等. 盐生植物根际耐盐碱微生物的筛选及其降解特性[J]. 贵州农业科学, 2015, 43(3):121-124. [52] Bao S, Wang Q, Bao X, et al.Biological treatment of saline-alkali soil by Sulfur-oxidizing bacteria[J]. Bioengineered, 2016, 7(5):372-375. [53] 吴晓卫, 付瑞敏, 郭彦钊, 等. 耐盐碱微生物复合菌剂的选育、复配及其对盐碱地的改良效果[J]. 江苏农业科学, 2015, 43(6):346-349. [54] 温祝桂, 朱小梅, 陈亚华, 等. 国内盐碱土改良技术及其对土壤微生物群落影响研究进展[J]. 陕西农业科学, 2016, 62(5):68-71. [55] Vimal SR, Patel VK, Singh JS.Plant growth promoting Curtobacte-rium albidum strain SRV4:An agriculturally important microbe to alleviate salinity stress in paddy plants[J]. Ecological Indicators, 2019, 105:553-562. [56] Ma Y, Rajkumar M, Moreno A, et al.Serpentine endophytic bacte-rium Pseudomonas azotoformans ASS1 accelerates phytoremedia-tion of soil metals under drought stress[J]. Chemosphere, 2017, 185:75-85. [57] Dimkpa C, Weinand T, Asch F.Plant-rhizobacteria interactions alleviate abiotic stress conditions[J]. Plant, Cell & Environment, 2009, 32(12):1682-1694. [58] Li X, Geng X, Xie R, et al.The endophytic bacteria isolated from elephant grass(Pennisetum purpureum Schumach)promote plant growth and enhance salt tolerance of Hybrid Pennisetum[J]. Biotechnology for Biofuels, 2016, 9(1):190. [59] 刘少芳, 王若愚. 植物根际促生细菌提高植物耐盐性研究进展[J]. 中国沙漠, 2019, 39(2):1-12. [60] 李琬, 刘淼, 张必弦, 等. 植物根际促生菌的研究进展及其应用现状[J]. 中国农学通报, 2014, 30(24):1-5. [61] Bharti N, Pandey SS, Barnawal D, et al.Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress[J]. Scientific Reports, 2016, 6(1):34768. [62] 鲁奥. 盐碱地中纤维素降解菌的植物促生特性研究[D]. 长春:东北师范大学, 2019. [63] Mishra J, Fatima T, Arora NK.Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress[M]//Plant Microbiome:Stress Response. Singapore:Springer, 2018:127-163. [64] 吕海霞. 丛枝菌根(真菌)对植物抗病性、抗旱性的影响[J]. 河南农业, 2019(13):35. [65] Kumar A, Verma JP.Does plant—microbe interaction confer stress tolerance in plants:a review?[J]. Microbiological Research, 2018, 207:41-52. [66] 张义飞, 王平, 毕琪, 等. 不同强度盐胁迫下AM真菌对羊草生长的影响[J]. 生态学报, 2016, 36(17):5467-5476. [67] Zhang YF, Wang P, Yang YF, et al.Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil:Implication on vegetation restoration of extremely degraded land[J]. Journal of Arid Environments, 2011, 75(9):773-778. [68] 何汉琼, 彭晓媛, 陶爽, 等. 丛枝菌根真菌对盐(碱)-旱交叉胁迫下羊草幼苗生长与抗氧化酶活性的影响[J]. 现代农业科技, 2019, 12:149-152. [69] Dashtebani F, Hajiboland R, Aliasgharzad N.Characterization of salt-tolerance mechanisms in mycorrhizal(Claroideoglomus etunicatum)halophytic grass, Puccinellia distans[J]. Acta Physiologiae Plantarum, 2014, 36(7):1713-1726. [70] 王娜, 陈飞, 岳英男, 等. 松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J]. 江苏农业科学, 2017, 45(24):146-148. |