生物技术通报 ›› 2019, Vol. 35 ›› Issue (1): 120-130.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0618
袁金玮, 陈笈, 陈芳, 刘万宏
收稿日期:
2018-07-07
出版日期:
2019-01-26
发布日期:
2019-01-23
作者简介:
袁金玮,男,硕士研究生,研究方向:Cd污染土壤生物修复;E-mail:yuanjw07@163.com
基金资助:
YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong
Received:
2018-07-07
Published:
2019-01-26
Online:
2019-01-23
摘要: 重金属对生态环境、农业生产、人类健康等诸多方面造成重要危害。植物修复因其具有经济有效、绿色生态等优点,已经成为土壤重金属污染修复研究领域的热点。由于植物重金属毒害、修复耗时过长等因素致使植物修复技术受限于研究阶段而不能广泛应用于实践。采用科学合理的强化措施提高植物修复的效率可能是解决该矛盾的关键之一。讨论了根瘤菌、丛枝菌根真菌、溶磷微生物和内生真菌构建的微生物-植物共生系统在强化植物修复过程中的具体应用;概述了EDTA、EDDS等螯合剂在改变土壤中重金属可溶态,促进重金属从土壤向植株转运的重要作用;介绍了植物中编码金属转运蛋白、金属硫蛋白、植物螯合肽等与重金属转运和代谢相关的基因在植物修复领域的实际应用;归纳了上述强化策略主要机制为微生物促进植物生长、缓解重金属植物毒性以及提高了土壤中重金属生物利用度,从而促进重金属在富集植物中积累和植物生物量的增加;最后总结并展望了植物修复强化技术在今后研究的重点及存在的问题。综述植物修复技术采用的主要强化策略及其机制,旨在为利用植物修复技术治理土壤重金属污染提供重要参考。
袁金玮, 陈笈, 陈芳, 刘万宏. 强化植物修复重金属污染土壤的策略及其机制[J]. 生物技术通报, 2019, 35(1): 120-130.
YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil[J]. Biotechnology Bulletin, 2019, 35(1): 120-130.
[1] Ali H, Khan E, Sajad MA.Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7):869-881. [2] Duan Q, Lee J, Liu Y, et al.Distribution of heavy metal pollution in surface soil samples in China:a graphical review[J]. Bull Environ Contam Toxicol, 2016, 97(3):303-309. [3] Li Z, Ma Z, van der Kuijp TJ, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Sci Total Environ, 2014, 468:843-853. [4] Wuana RA, Okieimen FE.Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011. doi:10.5402/2011/402647. [5] Mahar A, Wang P, Ali A, et al.Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:a review[J]. Ecotoxicol Environ Safety, 2016, 126:111-121. [6] Sarma H.Metal hyperaccumulation in plants:a review focusing on phytoremediation technology[J]. Journal of Environmental Science and Technology, 2011, 4(2):118-138. [7] Weyens N, Thijs S, Popek R, et al.The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants[J]. Int J Mol Sci, 2015, 16(10):25576-25604. [8] Teng Y, Wang X, Li L, et al.Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils[J]. Frontiers in Plant Science, 2015, 6(32):1-11. [9] Yu X, Li Y, Li Y, et al.Pongamia pinnata inoculated with Bradyrhizobium Liaoningense PZHK1 shows potential for phytoremediation of mine tailings[J]. Applied Microbiol & Biotechnol, 2017, 101(4):1739-1751. [10] Chen WM, Wu CH, James EK, et al.Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica[J]. J Hazard Mater, 2008, 151(2):364-371. [11] Göhre V, Paszkowski U.Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6):1115-1122. [12] Meier S, Borie F, Bolan N, et al.Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775. [13] Yang Y, Liang Y, Han X, et al.The roles of arbuscular mycorrhizal fungi(AMF)in phytoremediation and tree-herb interactions in Pb contaminated soil[J]. Sci Rep, 2016, 6:20469. [14] Leung H, Ye Z, Wong M.Interactions of mycorrhizal fungi with Pteris vittata(As hyperaccumulator)in as-contaminated soils[J]. Environmental Pollution, 2006, 139(1):1-8. [15] Giasson P, Jaouich A, Cayer P, et al.Enhanced phytoremediation:a study of mycorrhizoremediation of heavy metal-contaminated soil[J]. Remediation Journal, 2006, 17(1):97-110. [16] Gupta P, Kumar V.Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium[J]. World J Microbiol Biotechnol, 2017, 33(1):9. [17] Oves M, Khan MS, Zaidi A.Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils[J]. European Journal of Soil Biology, 2013, 56:72-83. [18] Li K, Ramakrishna W.Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth[J]. J Hazard Mater, 2011, 189(1):531-539. [19] Jeong S, Moon HS, Nam K, et al.Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium(Cd)from polluted soil[J]. Chemosphere, 2012, 88(2):204-210. [20] Syranidou E, Christofilopoulos S, et al.Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus[J]. Front Microbiol, 2016, 7:1016. [21] Khan AR, Ullah I, Khan AL, et al.Improvement in phytoremedia-tion potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation[J]. Environ Sci Pollut Res Int, 2015, 22(18):14032-14042. [22] Weyens N, Beckers B, Schellingen K, et al.The potential of the Ni-resistant TCE-degrading pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on a Ni-TCECo-Contamination[J]. International Journal of Phytoremediation, 2015, 17(1-6):40-48. [23] Ma Y, Rajkumar M, Zhang C, et al.Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of Environmental Management, 2016, 174:14-25. [24] Vassil AD, Kapulnik Y, Raskin I, et al.The role of EDTA in lead transport and accumulation by Indian mustard[J]. Plant Physiol, 1998, 117(2):447-453. [25] Luo J, Qi S, Gu XW, et al.An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems[J]. Ecotoxicology, 2016, 25(4):646-654. [26] Souza LA, Piotto FA, Nogueirol RC, et al.Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents[J]. Scientia Agricola, 2013, 70(4):290-295. [27] Attinti R, Barrett KR, Datta R, et al.Ethylenediaminedisuccinic acid(EDDS)enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field[J]. Environmental Pollution, 2017, 225:524-533. [28] Meers E, Ruttens A, Hopgood M, et al.Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022. [29] Kołodyn?ska D. Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters[M]// Ning RY Expanding Issues in Desalination, inTech Publishers, 2011:339-370. [30] Wu Q, Cui Y, Li Q, et al.Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating Ligand GLDA[J]. J Hazard Mater, 2015, 283:748-754. [31] 袁江, 李晔, 许剑臣, 等. 可生物降解螯合剂 GLDA 和植物激素共同诱导植物修复重金属污染土壤研究[J]. 武汉理工大学学报, 2016, 38(2):82-86. [32] Agnello AC, Huguenot D, van Hullebusch ED, et al. Citric acid-and Tween® 80-assisted phytoremediation of a co-contaminated soil:alfalfa(Medicago sativa L.)performance and remediation potential[J]. Environ Sci Pollut Res Int, 2016, 23(9):9215-9226. [33] Sun RL, Zhou QX, Jin CX.Cadmium accumulation in relation to organic acids in Leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1-2):125-134. [34] Zaheer IE, Ali S, Rizwan M, et al.Citric acid assisted phytoremediation of copper by Brassica napus L.[J]. Ecotoxicology and Environmental Safety, 2015, 120:310-317. [35] Krämer U, Pickering IJ, Prince RC, et al.Subcellular Localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J]. Plant Physiol, 2000, 122(4):1343-1354. [36] Sarret G, Saumitou-Laprade P, Bert V, et al.Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri[J]. Plant Physiol, 2002, 130(4):1815-1826. [37] Sriprang R, Hayashi M, Ono H, et al.Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase[J]. Appl Environ Microbiol, 2003, 69(3):1791-1796. [38] Ike A, Sriprang R, Ono H, et al.Bioremediation of cadmium contaminated soil using symbiosis between Leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J]. Chemosphere, 2007, 66(9):1670-1676. [39] Ike A, Sriprang R, Ono H, et al.Promotion of metal accumulation in nodule of Astragalus sinicus by the expression of the iron-regulated transporter gene in Mesorhizobium huakuii subsp. rengei B3[J]. J Biosci Bioeng, 2008, 105(6):642-648. [40] Wu CH, Wood TK, Mulchandani A, et al.Engineering plant-microbe symbiosis for rhizoremediation of heavy metals[J]. Appl Environ Microbiol, 2006, 72(2):1129-1134. [41] Lasat MM, Baker AJ, Kochian LV.Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J]. Plant Physiol, 1996, 112(4):1715-1722. [42] Pence NS, Larsen PB, et al.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerule-scens[J]. Proc Natl Acad Sci USA, 2000, 97(9):4956-4960. [43] Rodríguez-llorente ID, Lafuente A, et al. Engineering copper hyperaccumulation in plants by expressing a prokaryotic copC gene[J]. Environ Sci Technol, 2012, 46(21):12088-12097. [44] Zanella L, Fattorini L, Brunetti P, et al.Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification[J]. Planta, 2016, 243(3):605-622. [45] Guo J, Dai X, Xu W, et al.Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana[J]. Chemosphere, 2008, 72(7):1020-1026. [46] Zhu YL, Pilon-Smits EA, et al.Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance[J]. Plant Physiol, 1999, 119(1):73-80. [47] Bizily SP, Rugh Cl, Summers AO, et al.Phytoremediation of methylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials[J]. Proc Natl Acad Sci USA, 1999, 96(12):6808-6813. [48] Bizily SP, Rugh Cl, Meagher RB.Phytodetoxification of hazardous organomercurials by genetically engineered plants[J]. Nature Biotechnology, 2000, 18(2):213-217. [49] Nagata T, Kiyono M, Pan-Hou H.Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation[J]. Appl Microbiol Biotechnol, 2006, 72(4):777-782. [50] Nozoye T, Otani M, Senoura T, et al.Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil[J]. Plant and Soil, 2017, 418(1-2):75-78. [51] Sobariu Dl, Fertu DIT, Diaconu M, et al.Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation[J]. New Biotechnology, 2017, (39):125-134. [52] Hayat R, Ali S, Amara U, et al.Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology, 2010, 60(4):579-598. [53] Saha M, Sarkar S, Sarkar B, et al.Microbial siderophores and their potential applications:a review[J]. Environ Sci Pollut Res Int, 2016, 23(5):3984-3999. [54] Glick BR.Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 2014, 169(1):30-39. [55] Li W, Wang D, Hu F, et al.Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass[J]. Environ Sci Pollut Res Int, 2016, 23(11):10656-10664. [56] Revillas J, Rodelas B, Pozo C, et al.Production of B-group vitamins by two azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions[J]. Journal of Applied Microbiology, 2000, 89(3):486-493. [57] Cattelan A, Hartel P, Fuhrmann J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth[J]. Soil Science Society of America Journal, 1999, 63(6):1670-1680. [58] Yadav S.Heavy metals toxicity in plants:an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76(2):167-179. [59] Hossain MA, Piyatida P, da Silva JAT, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants:central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation[J]. Journal of Botany, 2012. doi:10.1155/2012/872875. [60] Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J]. Chemosphere, 2012, 89(6):743-750. [61] Di Baccio D, Galla G, Bracci T, et al.Transcriptome analyses of populus x euramericana clone I-214 Leaves exposed to excess zinc[J]. Tree Physiology, 2011, 31(12):1293-1308. [62] Srivastava S, Verma PC, Chaudhry V, et al.Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea(L.)Czern. Var. R-46[J]. J Hazard Mater, 2013, 262:1039-1047. [63] Shin M-N, Shim J, You Y, et al.Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J]. J Hazard Mater, 2012, 199:314-320. [64] Dimkpa CO, Svatoš A, et al.Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J]. Chemosphere, 2008, 74(1):19-25. [65] Ovečka M, Takáč T.Managing heavy metal toxicity stress in plants:biological and biotechnological tools[J]. Biotechnology Advances, 2014, 32(1):73-86. [66] DalCorso G, Fasani E, Furini A. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics[J]. Frontiers in Plant Science, 2013, 4:280. [67] Eggleton J, Thomas KV.A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment International, 2004, 30(7):973-980. [68] Tagliavini M, Masia A, Quartieri M.Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers[J]. Plant and Soil, 1995, 176(2):263-271. [69] Saravanan V, Madhaiyan M, Thangaraju M.Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9):1794-1798. [70] Suthar V, Memon KS, et al.EDTA-enhanced phytoremediation of contaminated calcareous soils:heavy metal bioavailability, extractability, and uptake by maize and sesbania[J]. Environ Monit Assess, 2014, 186(6):3957-3968. [71] Glińska S, Michlewska S, et al.The effect of EDTA and EDDS on lead uptake and Localization in hydroponically grown Pisum sativum L.[J]. Acta Physiol Plant, 2014, 36(2):399-408. [72] Li Y, Iqbal M, Zhang Q, et al.Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana[J]. New Phytologist, 2017, 215(3):1102-1114. [73] Lin YF, Hassan Z, Talukdar S, et al.Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana[J]. PLoS One, 2016, 11(3):e0149750. [74] Yokosho K, Yamaji N, et al.An aluminum-inducible IREG gene is required for internal detoxification of aluminum in buckwheat[J]. Plant Cell Physiol, 2016, 57(6):1169-1178. [75] Das N, Bhattacharya S, Maiti MK.Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation[J]. Plant Physiol Biochem, 2016, 105:297-309. [76] Oomen RJ, Wu J, Lelièvre F, et al.Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2009, 181(3):637-650. [77] Wei W, Chai T, Zhang Y, et al.The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport[J]. Molecular Biotechnology, 2009, 41(1):15-21. [78] Du ZY, Chen MX, Chen QF, et al.Expression of arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II)accumulation in Brassica juncea roots[J]. Plant, Cell & Environment, 2015, 38(1):101-117. |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[3] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[4] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[5] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[6] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[7] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[8] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[9] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[10] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[11] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[12] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[13] | 王晨宇, 周楚源, 何堤, 樊梓豪, 王梦梦, 杨柳燕. 多聚磷酸盐在微生物抗环境胁迫中的作用及机制[J]. 生物技术通报, 2023, 39(11): 168-181. |
[14] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[15] | 刘佳欣, 张会龙, 邹荣松, 杨秀艳, 朱建峰, 张华新. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展[J]. 生物技术通报, 2023, 39(1): 59-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||