生物技术通报 ›› 2020, Vol. 36 ›› Issue (7): 209-219.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1265
冯翠莲, 张树珍
收稿日期:
2019-12-26
出版日期:
2020-07-26
发布日期:
2020-07-28
作者简介:
冯翠莲,女,博士,副研究员,研究方向:甘蔗生物技术;E-mail:fengcuilian @itbb.org.cn
基金资助:
FENG Cui-lian, ZHANG Shu-zhen
Received:
2019-12-26
Published:
2020-07-26
Online:
2020-07-28
摘要: 由于甘蔗存在遗传背景复杂和抗虫种质资源缺乏的问题,造成甘蔗常规抗虫育种远远落后于其他作物的现状。基因工程为抗虫甘蔗的育种提供了一条崭新的途径。经过资料收集和整理并结合作者所在研究团队的研究成果,综述了近年来国内外抗虫转基因甘蔗的培育现状。首先介绍了甘蔗转基因遗传转化系统及其转基因的遗传稳定性研究的新发展,然后重点介绍了国内外在抗虫转基因甘蔗研究方面取得的突破性研究进展,尤其在通过Bt基因的改造和抗虫基因聚合等策略来防止转基因甘蔗的抗虫性下降甚至丧失等方面进行了详细的阐述,旨在为今后抗虫转基因甘蔗的育种工作提供参考。
冯翠莲, 张树珍. 抗虫转基因甘蔗的培育及其抗性丧失的防控策略[J]. 生物技术通报, 2020, 36(7): 209-219.
FENG Cui-lian, ZHANG Shu-zhen. Breeding of Transgenic Insect-resistant Sugarcane and Strategies for Preventing the Its Resistance to Insects from Loss[J]. Biotechnology Bulletin, 2020, 36(7): 209-219.
[1] http://www. chyxx.com/industry/201910/792703. html. [2] 叶颉, 阙友雄, 许莉萍. 中国转基因甘蔗商业化的现实条件与策略分析[J]. 科技管理研究, 2015, 334(12):33-39. [3] 黄应昆, 李文凤. 甘蔗主要病虫草害原色图谱[M]. 昆明:云南科技出版社, 2002. [4] 林俊芳. 甘蔗钙调蛋白的基因克隆及遗传转化方法的研究[D]. 福州:福建农业大学, 1996. [5] 潘世明, 王子琳, 王水琦, 等. 几年来甘蔗开花诱导和有性杂交技术的研究进展[J]. 甘蔗, 2000(2):12-15. [6] Manickavasagam M, Ganapathi A, Anbazhagan VR., et al. A grobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane(Saccharum species hybrids)using axillary buds[J]. Plant Cell Rep, 2004, 23(3):134-143. [7] Bower R, Birch RG.Transgenic sugarcane plants via microprojectile bombardment[J]. Plant J, 1992, 2:409-416. [8] Bower R, Elliott AR, Potier BAM, Birch RG.High-efficiency, microprojectile-mediated co-transformation of sugarcane, using visible or selectable markers[J]. Mol Breed, 1996, 2:239-249. [9] Arencibia AD, Carmona ER, Tellez P, et al.An efficient protocol for sugarcane(Saccharum spp. L.)transformation mediated by Agrobacterium tumefaciens[J]. Transgenic Research, 1998, 7(3):213-222. [10] Elliott AR, Campbell JA, Brettell RIS, et al.Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker[J]. Functional Plant Biology, 1998, 25(6):739-743. [11] Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, et al.Herbicide-resistant sugarcane(Saccharum officinarum L.)plants by Agrobacterium-mediated transformation[J]. Planta, 1998, 206(1):20-27. [12] Zhangsun DT, Luo SL, Chen RK, Tang KX.Improved Agrobacte-rium-mediated genetic transformation of GNA transgenic sugar-cane[J]. Biologia, Brastislava, 2007, 62(4):386-393. [13] Dong, SJ, Delucca, P, Geijskes, RJ, et al.Advances in Agrobacterium -mediated sugarcane transformation and stable transgene expression[J]. Sugar Tech, 2014, 16(4):366-371. [14] Zhang M, Zhuo X, Wang J, et al.Effective selection and regeneration of transgenic sugarcane plants using positive selection system[J]. In Vitro Cell Dev Biol Plant, 2015, 51(1):52-61. [15] 张树珍, 王文治, 冯翠莲, 等. 一种高效快速的甘蔗转基因方法:海南, CN101768604A[P].2010-07-07. [16] 王文治, 杨志坚, 杨本鹏, 等. 高效快速甘蔗转基因方法探索[J]. 热带作物学报, 2012, 33(09):1619-1624. [17] Vyver CVD, Conradie T, Kossmann J, et al.In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase[J]. In Vitro Cell Dev Biol Plant, 2013, 49(2):198-206. [18] Dermawan H, Karan R, Jung JH, et al.Development of an intragenic gene transfer and selection protocol for sugarcane resulting in resistance to acetolactate synthase-inhibiting herbicide[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2016, 126(3):459-468. [19] Jain M, Chengalrayan K, Abouzid A, et al.Prospecting the utility of a PMI /mannose selection system for the recovery of transgenic sugarcane(Saccharum spp. hybrid)plants[J]. Plant Cell Rep, 2007, 26:581-590. [20] 王文治, 杨本鹏, 蔡文伟, 等. 甘蔗转基因甘露糖筛选系统的建立[J]. 生物技术通报, 2015, 31(1):92-97. [21] Birch RG, Bower RS, Elliott AR, et al.Highly efficient, 5'-seque-nce-specific transgene silencing in a complex polyploid[J]. Trop Plant Biol, 2010, 3(2):88-97. [22] Ingelbrecht IL, Irvine JE, Mirkov TE, et al.Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome[J]. Plant Physiol, 1999, 119(4):1187-1197. [23] Mudge SR, Osabe K, Casu RE, et al.Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species[J]. Planta, 2009, 229(3):549-558. [24] Wei H, Wang ML, Moore PH, et al.Comparative expression analy-sis of two sugarcane polyubiquitin promoters and flanking sequen-ces in transgenic plants[J]. J Plant Physiol, 2003, 160(10):1241-1251. [25] Kinkema M, Geijskes J, Delucca P, et al.Improved molecular tools for sugar cane biotechnology[J]. Plant Mol Bio, 2014, 84(4-5):497-508. [26] Harrison MD, Geijskes RJ, Lloyd R, et al.Recombinant cellulase accumulation in the leaves of mature, vegetatively propagated transgenic sugarcane[J]. Mol Biotechnol, 2014, 56(9):795-802. [27] Joyce P, Hermann S, O’Connell A, et al. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods[J]. Plant Biotechnol, 2014, 12(4):411-424. [28] Caffall KH, He C, Smith-Jones M, et al.Long-term T-DNA insert stability and transgene expression consistency in field propagated sugarcane[J]. Plant Mol Bio, 2017, 93(4-5):451-463. [29] http://www. isaaa.org/gmapprovaldatabase/crop/default. asp?CropID=27. [30] 世农. 巴西糖厂开始种植全球第一批转基因甘蔗[J]. 中国食品学报, 2018, 18(3):66. [31] Herrera G, Snyman SJ, Thomson JA, et al.Construction of a bioinsecticidal strain of seudomonas fluorescens active against the sugarcane borer, Eldana saccharina[J]. Appl Environ Microbiol, 1994, 60(2):682-690. [32] Arencibia A, Vázquez RI, Prieto D, et al.Transgenic sugarcane(Saccharum officinarum L.)plants are tolerant to stem borer(Diatraea saccharalis F. )attack despite the low expression levels of cryIA(b)gene from B. thuringiensis var. kurstaki HD-1[J]. Biotechologia Aplicada, 1996, 13(2):1-3. [33] Arencibia A, Vázquez RI, Prieto D, et al . Transgenic sugarcane plants resistant to stem borer attack[J]. Molecular Breeding, 1997, 3(4):247-255. [34] Braga DPV, Arrigoni EDB, Burnquist WL.A new approach for control of Diatraea saceharalis(Lepidoptera:Crarsbidae)through the expression of an insecticidal CrylA(b)protein in transgenic sugarcane. International Society of Sugarcane Technologists[C]. Proceedings of the XXIV Congress, Brisbane, Australia, 2001:331-336. [35] 于兰, 秦新民, 黄德青. 农杆菌介导的BT基因导入甘蔗的研究[J]. 广西农学报, 2007, 22(6):1-4. [36] Kalunke RM, Kolge AM, Babu KH, et al.Agrobacterium mediated transformation of sugarcane for borer resistance using CrylAa3 gene and one-step regeneration of transgenic plants[J]. Sugar Tech, 2009, 11(4):355-359. [37] Arvinth S, Selvakesavan RK, Subramonian N, et al. Transmission and expression of transgenes in progeny of sugarcane clones with crylAb and aprotinin genesI [J]. Sugar Tech, 2009, 1 l(3):292-295. [38] Arvinth S, Arun S, Selvakesavan RK.Genetic transformation and pyramiding of aprotinin expressing sugarcane with erylAb for shoot borer(Chilo infuscateHus)resistance[J]. Plant Cell Rep, 2010, 29(4):383-395. [39] Kilvia IC, Jose EG, Maria CM, et al.Variant CrylIa toxins generated by DNA shuffling are active against sugarcane giant borer[J]. J Biotechnol, 2010, 145:215-221. [40] Weng LX, Deng HH, Xu JL, et al.Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance[J]. Pest Management Science, 2006, 62(2):178-187. [41] Weng LX, Deng HH, Xu JL, et al.Transgenic sugarcane plants expressing high levels of modified crylAc provide effective control against stem borers in field trials[J]. Transgenic Research, 2011, 20(4):759-772. [42] 陈勇生, 翁丽星, 劳方业, 等. 转Bt基因甘蔗抗虫性及重要经济农艺性状的评价[J]. 热带亚热带植物学报, 2012, 20(4):376-381. [43] 王继华, 曹干, 张木清. 转Bt基因甘蔗的生理研究[J]. 热带作物学报, 201l, 32(10):1864-1867. [44] 冯翠莲, 刘晓娜, 张树珍, 等. CryIA(c)基因植物表达载体的构建及转基因甘蔗的获得[J]. 热带作物学报, 2010 (7):1103-1108. [45] 崔学强, 张树珍, 冯翠莲, 等. 转基因甘蔗植株Southern杂交体系的优化[J]. 生物技术通报, 2015, 31(12):105-109. [46] 高世武, 郭晋隆, 许莉萍, 等. 基因枪法获得转CryIAc基因甘蔗的研究[J]. 热带亚热带植物学报, 2011, 19(2):142-148. [47] 李继虎, 管楚雄, 许汉亮, 等. 转Bt基因甘蔗对甘蔗条螟的抗虫性评价[J]. 甘蔗糖业, 2015, 6:13-17. [48] Hameed A, Nasir IA, Tabassum B, et al.Biosafety assessment of locally developed transgenic sugarcane[J]. Animal & Plant Sciences, 2016, 26(4):1124-1132. [49] Gao SW, Yang YY, Wang CF, et al.Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane Borer[J]. PLoS One, 2016, 11(4):1-16. [50] Zhou DG, Xu LP, Gao SW, et al.Cry1Ac Transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season[J]. Frontiers in Plant Science, 2016, 7:265-281. [51] Zhou D, Liu X, Gao S, et al.Foreign cry1Ac gene integration and endogenous borer stress-related genes synergistically improve insect resistance in sugarcane[J]. BMC Plant Biol, 2018, 18(1):342. [52] 崔学强. 转Cry1Ac基因甘蔗优良株系筛选及抗虫性分析[D]. 海口:海南大学, 2016. [53] 王文治, 杨本鹏, 蔡文伟, 等. 甘蔗一次多基因遗传转化及多重PCR检测[J]. 生物技术通报, 2016, 32(1):103-108. [54] Wang WZ, Yang BP, Feng XY, et al.Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance[J]. Front Plant Sci. 2017, 8:1535-1545. [55] Gao SW, Yang YY, Xu LP, et al.Particle Bombardment of the cry2A Gene Cassette Induces Stem Borer Resistance in Sugarcane[J]. Int J Mol Sci, 2018, 19(6):1692-1708. [56] PlinioTC, Edson LK, Adriana NC, et al. Development of transgenic sugarcane resistant to sugarcane borer[J]. Trop Plant Biol, 2018, 11;17-30. [57] Nutt KA, Allsopp PG, McGhie TK, et al. Transgenic sugarcane with increased resistance to canegrubs[C]. Proc 1999 Conf Aust Soc Sug Cane Technol, Townsville, Queensland, Australia, 1999:171-176. [58] Setamou M, Berual JS, Legaspi JC, et al.Evaluation of lectin-expressing transgenic sugarcane against stalkborers(Lepidop-tera:Pyralidae):Effects on life history parameters[J]. J Econ Entomol, 2002, 95(2):469-477. [59] Tomov BW, Bernal JS, Vinson SB, et al. Impacts of transgenic sugarcane expressing gna lectin on parasitism of mexican rice borer by Parallorhogas pyralophagus(Marsh)(Hymenoptera:Braconidae)[J]. Environ Entomol, 2003, 32, (4):866-872. [60] 陈平华, 林美娟, 薛志平, 等. GNA基因遗传转化甘蔗研究[J]. 甘蔗, 2004, 11(3):1-6. [61] 长孙东亭, 罗素兰, 陈如凯, 等. 基因枪法介导GNA基因遗传转化甘蔗的研究[J]. 生物技术, 2006, 16(3):5l-55. [62] Zhangsun DT, Luo SL, Chen RK, et al.Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane[J]. Biologia(Bratislava), 2007, 62(4):386-393. [63] Falco MC, Silva-Filho MC.Expression of soybean proteinase inhibitors in transgenic sugarcane plants:effects on natural defense against Diatraea saccharalis)[J]. Plant Physiol Biochem, 2003, 41(8):761-766. [64] Christy LA, Aravith S, Saravanakumar M, et al.Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor(aprotinin)gene for protection against top borer(Scirpophaga excerptalis Walker))[J]. Plant Cell Rep, 2009, 28:175-184. [65] Tabashnik BE, Gassmann AJ, Crowder DW, et al.Insect resistance to Bt crops:evidence versus theory[J]. Nat Biotechnol, 2008, 26(2):199-202. [66] Tabashnik BE, Brevault T, Carriere Y.Insect resistance to Bt crops:lessons from the first billion acres[J]. Nat Biotechnol, 2013, 31(6):510-521. [67] Gould F.Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]. Annu Rev Entomol, 1998, 43:701-726. [68] Tabashnik BE, Dennehy TJ, Carriere Y.Delayed resistance to transgenic cotton in pink bollworm[J]. Proc Natl Acad Sci USA, 2005, 102:15389-15393. [69] Sidorenko LV, Lee TF, Woosley A, et al.GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing[J]. Nat Plants, 2017, 3(11):875-884. [70] Gould F.Testing Bt refuge strategies in the field[J]. Nat Biotechnol, 2000, 18(3):266-267. [71] 刘标. 抗虫转Bt基因植物的环境安全研究进展[J]. 南京师大学报:自然科学版, 2016, 39(3):1-9. [72] Brevault T, Heuberger S, Zhang M, et al.Potential shortfall of pyramided transgenic cotton for insect resistance management[J]. Proc Natl Acad Sci USA, 2013, 110(15):5806-5811. [73] Xu LN, Wang ZY, Zhang J, et al.Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins[J]. J Appl Entomol, 2010, 134(5):429-438. [74] Li HR, Olson M, Lin GF, et al.Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites[J]. PLoS One, 2013, 8(1):53079. [75] Lu YH, Rijzaani H, Karcher D, et al.Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons[J]. Proc Natl Acad Sci USA, 2013, 110(8):E623-632. [76] Cristofoletti PT, Kemper EL, Capella AN, et al.Development of transgenic sugarcane resistant to sugarcane borer[J]. Tropical Plant Biology, 2018, 11:17-30. [77] 邓智年. 野苋菜凝集素基因的克隆及转基因研究[D]. 南宁:广西大学, 2007. [78] 吴转娣, 吴才文, 曾千春, 等. Cy1Ac和sck双价抗虫基因遗传转化甘蔗的研究[J]. 热带作物学报, 2014, 35(11):2236-2242. [79] 冯翠莲, 张树珍. CryIA(c)和gna融合基因植物表达载体的构建[J]. 热带作物学报. 2010. 31(2):224-228. [80] 冯翠莲. CryIA(c)-2A-gna融合基因、CryIA(c)和CryIA(b)单价基因遗传转化甘蔗的研究[D]. 海口:海南大学, 2010. [81] Kennedy RD, Cheavegatti-Gianotto A, de Oliveira WS, et al. A general safety assessment for purified food ingredients derived from biotechnology crops:Case study of brazilian sugar and beverages produced from insect-protected sugarcane[J]. Front Bioeng Biotechnol, 2018, 6:45. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[3] | 黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174. |
[4] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[5] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[6] | 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析[J]. 生物技术通报, 2023, 39(1): 31-39. |
[7] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[8] | 李佳乐, 林晟豪, 许文涛. 基于环介导等温扩增的抗虫基因超灵敏比色生物传感器构建[J]. 生物技术通报, 2022, 38(8): 69-76. |
[9] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[10] | 赵婷婷, 王俊刚, 王文治, 冯翠莲, 冯小艳, 张树珍. 甘蔗单糖转运蛋白基因ShSTP7序列分析及组织表达特征测定[J]. 生物技术通报, 2022, 38(4): 72-78. |
[11] | 张靖, 尤垂淮, 曹月, 崔天真, 杨靖涛, 罗俊. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31. |
[12] | 冯翠莲, 万玥, 王俊刚, 冯小艳, 赵婷婷, 王文治, 沈林波, 张树珍. 转Cry1Ac-2A-gna基因甘蔗BCG-17转化体特异性检测方法的建立[J]. 生物技术通报, 2021, 37(5): 248-258. |
[13] | 李海超, 谢飞, 张园琦, 关若冰. 不同抗、感水稻品种对褐飞虱肠道菌群的影响[J]. 生物技术通报, 2021, 37(3): 1-9. |
[14] | 兰青阔, 赵新, 沈晓玲, 魏静娜, 刘双, 陈锐, 檀建新, 王永. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11): 222-229. |
[15] | 金永梅, 马瑞, 于志晶, 林秀峰. 转cry1C基因抗虫水稻吉生粳3号外源基因整合分析与品系特异性检测[J]. 生物技术通报, 2019, 35(3): 6-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||