生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 82-90.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0375
李卫娜1(), 申冬玲2, 张煜星1, 刘学通1, 伊日布斯2()
收稿日期:
2020-04-06
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
李卫娜,女,硕士研究生,研究方向:微生物学;E-mail:基金资助:
LI Wei-na1(), SHEN Dong-ling2, ZHANG Yu-xing1, LIU Xue-tong1, IRBIS Chagan2()
Received:
2020-04-06
Published:
2020-12-26
Online:
2020-12-22
摘要:
研究来自厌氧海藻酸分解菌的海藻酸裂解酶,表征其酶学特征,旨为丰富海藻酸裂解酶工业应用提供理论依据。从一株厌氧菌Mangrovibacterium sp. SH-52中克隆一个海藻酸裂解酶基因SHA-I,分析基因序列,并在大肠杆菌中进行异源表达,纯化后对其酶学性质进行分析。SHA-I由362个氨基酸构成,分子量大约为41 kD,与Lewinella cohaerens中的海藻酸裂解酶同源性最高,为80%,属于多聚糖裂解酶类(Polysaccharide lyase,PL)7家族。SHA-I最适pH为7.0,最适温度是50℃,在60℃时的活性超过最高活性的50%,在80℃时约为最高活性的40%,表明SHA-I是一种耐热性海藻酸裂解酶。SHA-I对polyG(聚甘露糖醛酸)有底物特异性,其降解海藻酸主要产生二糖和三糖,是一种内切型海藻酸裂解酶。
李卫娜, 申冬玲, 张煜星, 刘学通, 伊日布斯. Mangrovibacterium sp. SH-52耐热内切型海藻酸裂解酶基因的克隆及酶学鉴定[J]. 生物技术通报, 2020, 36(12): 82-90.
LI Wei-na, SHEN Dong-ling, ZHANG Yu-xing, LIU Xue-tong, IRBIS Chagan. Cloning and Enzymatic Identification of Thermo-tolerant and Endotype Alginate Lyase Gene from Mangrovibacterium sp. SH-52[J]. Biotechnology Bulletin, 2020, 36(12): 82-90.
图2 SHA-I与PL7家族氨基酸序列的比对 黑色箭头代表PL7家族海藻酸裂解酶高度保守区SA3,SA4和SA5[30];红框代表 PL7家族海藻酸裂解酶保守催化残基[13,30-32];黑色环代表 PL7 表面活性裂缝残基[32];蓝色箭头代表Sphingomonas sp. A1- II’活性裂缝的两个盖环(L1和L2)[30,31]. SHA-I来自 Mangrovibacterium sp. SH-52;alginate lyase来自Zobellia galactanivorans(GenBank accession number,WP_013995454);alginate lyase来自Lewinella cohaerens(GenBank accession number,WP_020539194.1);alginate lyase来自Cellulophaga baltica(GenBank accession number,WP_029448962);alginate lyase来自Flavobacteriales bacterium ALC-1(GenBank accession number,WP_008 271146);alginate lyase来自Zobellia uliginosa(GenBank accession number,WP_03 8232734);alginate lyase来自Flavobacterium sp. S20(GenBank accession number,AEB69783.1);A1- II’来自 Sphingomonas sp. A1(GenBank accession number,BAD16656)
Step | Total protein/(mg·L-1) | Totalactivity/U | Specific activity/(U·mg-1) | Yield/% | Purification(fold) |
---|---|---|---|---|---|
Cell extract | 162.0 | 421.2 | 2.6 | 100.0 | 1 |
GST Sefinose Resin BSP091 | 3.2 | 41.6 | 13.0 | 9.8 | 5 |
表1 重组海藻酸裂解酶SHA-I的纯化
Step | Total protein/(mg·L-1) | Totalactivity/U | Specific activity/(U·mg-1) | Yield/% | Purification(fold) |
---|---|---|---|---|---|
Cell extract | 162.0 | 421.2 | 2.6 | 100.0 | 1 |
GST Sefinose Resin BSP091 | 3.2 | 41.6 | 13.0 | 9.8 | 5 |
Reagent | Concentration/(mmol·L-1) | Relative activity/% |
---|---|---|
None | 0 | 100 |
NaCl | 1 | 101 |
50 | 156 | |
100 | 158 | |
KCl | 1 | 115 |
MgCl2 | 1 | 112 |
NiCl2 | 1 | 7 |
ZnCl2 | 1 | 114 |
CoCl2 | 1 | 92 |
HgCl2 | 1 | 8.5 |
CaCl2 | 1 | 104 |
MnCl2 | 1 | 85.1 |
EDTA | 1 | 33.5 |
表2 金属离子对重组酶SHA-I活性的影响
Reagent | Concentration/(mmol·L-1) | Relative activity/% |
---|---|---|
None | 0 | 100 |
NaCl | 1 | 101 |
50 | 156 | |
100 | 158 | |
KCl | 1 | 115 |
MgCl2 | 1 | 112 |
NiCl2 | 1 | 7 |
ZnCl2 | 1 | 114 |
CoCl2 | 1 | 92 |
HgCl2 | 1 | 8.5 |
CaCl2 | 1 | 104 |
MnCl2 | 1 | 85.1 |
EDTA | 1 | 33.5 |
[1] |
Pawar SN, Edgar KJ. Alginate derivatization:a review of chemistry, properties and applications[J]. Biomaterials, 2012,33(11):3279-3305.
URL pmid: 22281421 |
[2] | Formo K, Aarstad OA, et al. Lyase-catalyzed degradation of alginate in the gelled state:effect of gelling ions and lyase specificity[J]. Carbohydrate Polymers, 2014,110(22):100-106. |
[3] | Abdallah QA, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol[J]. Front Energy Res, 2016,4(3):1-15. |
[4] | Cheng Y, Wang D, et al. Biochemical characteristics and variable alginate-degrading modes of a novel bifunctional endolytic alginate lyase[J]. Appl Environ Microbiol, 2017,83(23):1608-1617. |
[5] | 赵建平, 于大海, 朱光军, 等. 超声方法对于海藻酸钠的降解反应研究[J]. 光谱实验室, 2009,26(2):243-245. |
Zhao JP, Yu DH, Zhu GJ, et al. Study on the degradation reaction of sodium alginate by ultrasonic method[J]. Chinese Journal of Spectroscopy Laboratory, 2009,26(2):243-245. | |
[6] |
Tømmeraas K, Vårum KM, Christensen BE, et al. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans[J]. Carbohydrate Research, 2001,333(2):137-144.
URL pmid: 11448674 |
[7] |
Nakada HI, Sweeny PC. Alginic acid degradation by eliminases from Abalone hepatopancreas[J]. The Journal of Biological Chemistry, 1967,242(5):845-851.
URL pmid: 6020438 |
[8] |
Yamasaki Y, Yokose T, Nishikawa T, et al. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii[J]. Journal of Bioscience and Bioengineering, 2012,113(1):112-116.
URL pmid: 22018736 |
[9] | Kim HS, Lee CG, Lee EY. Alginate lyase:Structure, property, and application[J]. Biotechnol Bioprocess Eng, 2011,16:843. |
[10] | Zhu B, Chen M, Yin H, et al. Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase[J]. Marine Drugs, 2016,14(6):108. |
[11] |
Martin M, Portetelle D, Michel G, et al. Microorganisms living on macroalgae:diversity, interactions, and biotechnological applications[J]. Applied Microbiology and Biotechnology, 2014,98(7):2917-2935.
URL pmid: 24562178 |
[12] |
Ertesvåg H. Alginate-modifying enzymes:biological roles and biotechnological uses[J]. Front Microbiol, 2015,6:523.
URL pmid: 26074905 |
[13] |
Thomas F, Lundqvist LC, Jam M, et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate[J]. J Biol Chem, 2013,288:23021-23037.
doi: 10.1074/jbc.M113.467217 URL pmid: 23782694 |
[14] |
Enquist-Newman M, Faust AM, Bravo DD, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform[J]. Nature, 2015,505(7482):239-243.
doi: 10.1038/nature12771 URL pmid: 24291791 |
[15] |
Wargacki AJ, Leonard E, Win MN, et al. An engineered microbial platform for direct biofuel production from brown macroalgae[J]. Science, 2012,335(6066):308-313.
doi: 10.1126/science.1214547 URL pmid: 22267807 |
[16] |
Maria EN, Ann ME, Daniel D, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform[J]. Nature, 505(7482):239-243.
URL pmid: 24291791 |
[17] |
Tusi SK, Khalaj L, Ashabi G, et al. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress[J]. Biomaterials, 2011,32(23):5438-5458.
URL pmid: 21543116 |
[18] |
Liu S, Liu G, Yi Y. Novel vanadyl complexes of alginate saccharides:Synjournal, characterization, and biological activities[J]. Carbohydrate Polymers, 2015,121:86-91.
URL pmid: 25659675 |
[19] |
Chen J, Hu Y, Zhang L, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery[J]. Front Pharmacol, 2017,8:623.
URL pmid: 28955228 |
[20] | Kim HS. Characterization of recombinant polyG-specific lyase from a marine bacterium, Streptomyces sp. M3[J]. Journal of Life Science, 2010,20(11):1582-1588. |
[21] |
Li S, Yang X, Zhang L, et al. Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marine bacterium Agarivorans sp. L11[J]. Journal of Microbiology and Biotechnology 2015,25(5):681-686.
URL pmid: 25418481 |
[22] |
Kim HT, Ko HJ, Kim N, et al. Characterization of a recombinant endo-type alginate lyase(Alg7D)from Saccharophagus degradans[J]. Biotechnology Letters, 2012,34:1087-1092.
URL pmid: 22391735 |
[23] |
Inoue A, Anraku M, Nakagawa S, et al. Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability[J]. The Journal of Biological Chemistry, 2016,291(30):15551-15563.
doi: 10.1074/jbc.M115.713230 URL pmid: 27231344 |
[24] |
Yang X, Li S, et al. Cloning and characterizationof two thermo- and salt-tolerant oligoalginate lyases from marine bacterium Halomonas sp.[J]. FEMS Microbiol Lett, 2016,363(9):fnw079.
URL pmid: 26976852 |
[25] |
Kobayashi T, Uchimura K, Miyazaki M, et al. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp.[J]. Extremophiles 2009,13:121-129.
URL pmid: 19002649 |
[26] | Xiao L, Han F, Yang Z, et al. A novel alginate lyase with high activity on acetylated alginate of Pseudomonas aeruginosa FRD1 from Pseudomonas sp. QD03[J]. World J Microbiol Biotechnol, 2006,22:81-88. |
[27] |
Uchimura K, Miyazaki M, Nogi Y, et al. Cloning and sequencing of alginate lyase genes from deep-sea strains of vibrio and agarivorans and characterization of a new vibrio enzyme[J]. Marine Biotechnology, 2010,12(5):526-533.
URL pmid: 19941025 |
[28] | Li JW, Dong S, Song J, et al. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524[J]. Marine Drugs, 2011,9(11):109-123. |
[29] | Haug A, Larsen B, Smidsrød O, et al. Studies on the sequence of uronic acid residues in alginic acid[J]. Acta Chem Scand, 1967,21:691-704. |
[30] |
Yamasaki M, Ogura K, Hashimoto W. A structural basis for depolymerization of alginate by polysaccharide lyase family-7[J]. Journal of Molecular Biology, 2005,352(1):11-21.
URL pmid: 16081095 |
[31] |
Ogura K, Yamasaki M, Mikami B, et al. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1[J]. Journal of Molecular Biology, 2008,380(2):373-385.
doi: 10.1016/j.jmb.2008.05.008 URL pmid: 18514736 |
[32] |
Yamasaki M, Moriwaki S, Miyake O, et al. Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7:a novel alginate lyase with a beta-sandwich fold[J]. J Biol Chem, 2004,279(30):31863-31872.
URL pmid: 15136569 |
[33] |
Kim DE, Lee EY, Kim HS. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5[J]. Marine Biotechnology, 2009,11(1):10-16.
doi: 10.1007/s10126-008-9114-9 URL pmid: 18553118 |
[34] |
Park HH, Kam N, et al. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3[J]. Marine Biotechnology, 2012,14:189-202.
URL pmid: 21826589 |
[35] |
Duan G, Han F, Yu W. Cloning, sequence analysis, and expression of gene alyPI encoding an alginate lyase from marine bacterium Pseudoalteromonas sp. CY24[J]. Can J Microbiol, 2009,55(9):1113-1118.
URL pmid: 19898554 |
[36] |
Chen XL, Sheng D, Fei X, et al. Characterization of a new cold-adapted and salt-activated polysaccharide lyase family 7 alginate lyase from Pseudoalteromonas sp. SM0524[J]. Frontiers in Microbiology, 2016,7:1120.
URL pmid: 27486451 |
[37] | Singh RP, Gupta V, et al. Purification and partial characterization of an extracellular alginate lyase from Aspergillus oryzae isolated from brown seaweed[J]. J Appl Phycol, 2011,23:755-762. |
[38] |
Zhang H, Xu Q, Ye J, et al. Structural and functional studies on three alginate lyases from Vibrio alginolyticus[J]. Protein Pept Lett, 2014,21(2):179-187.
doi: 10.2174/09298665113206660094 URL pmid: 24050202 |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[3] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[4] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[5] | 牛馨, 张莹, 王茂军, 刘文龙, 路福平, 李玉. 解淀粉芽胞杆菌不同整合位点对外源碱性蛋白酶表达的影响[J]. 生物技术通报, 2022, 38(4): 253-260. |
[6] | 王玥, 高庆华, 董聪, 罗同阳, 王庆庆. 密码子优化的吡喃糖氧化酶基因在毕赤酵母中的表达[J]. 生物技术通报, 2022, 38(4): 269-277. |
[7] | 常晴, 束月蓉, 王文韬, 蒋昊, 延泉德, 钱政, 高雪纯, 吴金鸿, 张勇. 来自Yeosuana marina sp. JLT21内切型海藻酸裂解酶的异源表达及酶学表征[J]. 生物技术通报, 2022, 38(2): 123-131. |
[8] | 王博雅, 姜勇, 黄艳, 曹颖, 胡尚连. 慈竹纤维素合酶BeCesA4的克隆及功能分析[J]. 生物技术通报, 2022, 38(11): 185-193. |
[9] | 王小桃, 邹杭, 吴怡, 向省维, 吕华, 刘超兰, 林家富, 王欣荣, 褚以文, 宋涛. Paraglaciecola hydrolytica中新型β-琼胶酶Aga2的异源表达及酶学性质分析[J]. 生物技术通报, 2022, 38(11): 258-268. |
[10] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
[11] | 廖兆民, 蔡俊, 林建国, 杜馨, 王常高. 黑曲霉葡萄糖氧化酶基因在毕赤酵母中的表达及产酶条件的优化[J]. 生物技术通报, 2021, 37(6): 97-107. |
[12] | 刘珊, 叶伟, 朱牧孜, 李赛妮, 邓张双, 章卫民. 一种新型酰基转移酶GPAT的克隆、表达与酶学性质研究[J]. 生物技术通报, 2021, 37(11): 257-266. |
[13] | 赵海燕, 宋晨斌, 刘正亚, 马兴荣, 尚会会, 李安华, 关现军, 王建设. 来源于Laceyella sp.的α-淀粉酶基因克隆、重组表达及酶学性质研究[J]. 生物技术通报, 2020, 36(8): 23-33. |
[14] | 刘敏, 房玉林. 葡萄ERECTA基因过表达提高拟南芥生长量和耐热性[J]. 生物技术通报, 2020, 36(6): 46-53. |
[15] | 赵江华, 房欢, 张大伟. 微生物次级代谢产物生物合成的研究进展[J]. 生物技术通报, 2020, 36(11): 141-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||