生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 213-224.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1379
收稿日期:
2020-11-12
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
张永兰,女,硕士,研究方向:植物抗逆生物学;E-mail: 基金资助:
ZHANG Yong-lan(), XIE Li-nan()
Received:
2020-11-12
Published:
2021-06-26
Online:
2021-07-08
摘要:
土地盐碱化是导致作物产量降低的重要影响因素之一。在盐胁迫下,植物进化出一系列应对盐胁迫的策略,其中,离子转运蛋白在植物应对盐胁迫的过程中发挥着举足轻重的作用。HKT1转运蛋白是一类具有转运Na+功能的离子转运蛋白,主要定位在维管束组织附近,广泛存在于单子叶植物和双子叶植物中,参与植物体内Na+的长距离运输,调节植物中Na+浓度,有助于维持植物体内的离子平衡。分别讨论了不同植物中HKT1蛋白的功能以及相应的调控过程,总结了HKT1参与Na+长距离运输的作用模型。通过综合近年来对HKT1的研究,合理运用分子育种等手段,以期为增加农作物的耐盐胁迫能力,提高农作物的质量和产量奠定理论基础。
张永兰, 解莉楠. HKT1在植物耐盐机制中的研究进展[J]. 生物技术通报, 2021, 37(6): 213-224.
ZHANG Yong-lan, XIE Li-nan. Advances in HKT1 Study on the Mechanism of Salt Tolerance in Plants[J]. Biotechnology Bulletin, 2021, 37(6): 213-224.
图1 HKT转运蛋白结构示意图 HKT类转运蛋白是具有8个跨膜结构域,中间包括4个P环的膜转运蛋白。HKT家族蛋白序列较为保守,但在第一、二个跨膜结构域之间的第一蛋白孔域,存在氨基酸组成差异,这些差异决定蛋白转运的离子类型。除了第一蛋白孔域之外,在HKT转运蛋白的其他位置中也发现影响离子转运特性的氨基酸,但并不作为HKT家族蛋白分类依据
Fig. 1 Schematic diagram of HKT transport protein structure HKT transporters are membrane transporters with eight transmembrane domains and four P loops in the middle. The HKT family protein sequence is relatively conservative,but there are differences in amino acid composition in the first protein pore domain between the first and second transmembrane domains,and these differences determine the type of ion transported by the protein. In addition to the first protein pore domain,amino acids that affect ion transport properties are also found in other positions of the HKT transport protein,but they are not used as the basis for the classification of HKT family proteins
基因名称 Gene name | 物种 Species | 表达位置 Express position | 在植物中的功能 Function in plants | 异源表达时的功能 Function in heterologous expression |
---|---|---|---|---|
EcHKT1;2 | 蓝桉树 Eucalyptus camalduensis | 根、茎、叶均有表达[ | 转运K+[ | 大肠杆菌:K+转运 非洲爪蟾卵母细胞:Na+、K+、Rb+、Li+转运 |
McHKT1;1 | 冰叶日中花 Mesembryantemum crystallinum | 根:表皮细胞、维管束组织[ 叶:木质部薄壁细胞、导管细胞 | 根中表皮细胞转运K+进入细胞[ | 酿酒酵母:K+转运 非洲爪蟾卵母细胞[ |
TsHKT1;2 | 盐芥 Thellungiella salsuginea | 根和叶的维管束,木质部薄壁 细胞[ | 转运K+[ | 酿酒酵母[ |
SvHKT1;1 | 鼠尾栗 Sporobolus virginicus | 500 mmol/L氯化钠处理,根中表达量明显升高[ | 防止地上部分Na+积累过高[ | 酿酒酵母:Na+转运 |
AtHKT1;1 | 拟南芥 Arabidopsis thaliana | 根和叶的维管束,木质部薄壁 细胞[ | 在地上部分,将Na+转运到韧皮部中; 在根中,将Na+从木质部中转运出来[ | 大肠杆菌[ 酿酒酵母:Na+转运 |
OsHKT1;1 | 水稻 Oryza sativa L. | 根:表皮、分化为通气组织的内皮,根中柱(尤其是韧皮部) 叶:叶肉细胞和维管束[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞:Na+转运[ | |
OsHKT1;4 | 水稻 Oryza sativa L. | 叶鞘[ | 控制叶鞘叶片之间的Na+转移[ | |
OsHKT1;5 | 水稻 Oryza sativa L. | 根和叶的维管束[ | 在根中,将Na+从木质部中转运出来[ | 非洲爪蟾卵母细胞:Na+转运 |
TaHKT1;4 | 小麦 Triticum aestivum | 根、叶鞘和叶片[ | 将Na+从木质部中转运到木质部薄壁细胞[ | |
TaHKT1;5 | 小麦 Triticum aestivum | 根中表达,地上部分不表达[ | 将Na+从木质部中转运到木质部薄壁细胞[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ |
SlHKT1;1 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ | |
SlHKT1;2 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母、非洲爪蟾卵母细胞[ | |
HvHKT1;1 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 根中横向Na+运输,减少地上部分的Na+积累[ | 酿酒酵母、非洲爪蟾卵母细胞[ |
HvHKT1;5 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 将Na+从木质部薄壁细胞转运到木质部中[ | 非洲爪蟾卵母细胞:Na+转运[ |
表1 HKT类转运蛋白的分类
Table 1 Classification of HKT transporters
基因名称 Gene name | 物种 Species | 表达位置 Express position | 在植物中的功能 Function in plants | 异源表达时的功能 Function in heterologous expression |
---|---|---|---|---|
EcHKT1;2 | 蓝桉树 Eucalyptus camalduensis | 根、茎、叶均有表达[ | 转运K+[ | 大肠杆菌:K+转运 非洲爪蟾卵母细胞:Na+、K+、Rb+、Li+转运 |
McHKT1;1 | 冰叶日中花 Mesembryantemum crystallinum | 根:表皮细胞、维管束组织[ 叶:木质部薄壁细胞、导管细胞 | 根中表皮细胞转运K+进入细胞[ | 酿酒酵母:K+转运 非洲爪蟾卵母细胞[ |
TsHKT1;2 | 盐芥 Thellungiella salsuginea | 根和叶的维管束,木质部薄壁 细胞[ | 转运K+[ | 酿酒酵母[ |
SvHKT1;1 | 鼠尾栗 Sporobolus virginicus | 500 mmol/L氯化钠处理,根中表达量明显升高[ | 防止地上部分Na+积累过高[ | 酿酒酵母:Na+转运 |
AtHKT1;1 | 拟南芥 Arabidopsis thaliana | 根和叶的维管束,木质部薄壁 细胞[ | 在地上部分,将Na+转运到韧皮部中; 在根中,将Na+从木质部中转运出来[ | 大肠杆菌[ 酿酒酵母:Na+转运 |
OsHKT1;1 | 水稻 Oryza sativa L. | 根:表皮、分化为通气组织的内皮,根中柱(尤其是韧皮部) 叶:叶肉细胞和维管束[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞:Na+转运[ | |
OsHKT1;4 | 水稻 Oryza sativa L. | 叶鞘[ | 控制叶鞘叶片之间的Na+转移[ | |
OsHKT1;5 | 水稻 Oryza sativa L. | 根和叶的维管束[ | 在根中,将Na+从木质部中转运出来[ | 非洲爪蟾卵母细胞:Na+转运 |
TaHKT1;4 | 小麦 Triticum aestivum | 根、叶鞘和叶片[ | 将Na+从木质部中转运到木质部薄壁细胞[ | |
TaHKT1;5 | 小麦 Triticum aestivum | 根中表达,地上部分不表达[ | 将Na+从木质部中转运到木质部薄壁细胞[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ |
SlHKT1;1 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ | |
SlHKT1;2 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母、非洲爪蟾卵母细胞[ | |
HvHKT1;1 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 根中横向Na+运输,减少地上部分的Na+积累[ | 酿酒酵母、非洲爪蟾卵母细胞[ |
HvHKT1;5 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 将Na+从木质部薄壁细胞转运到木质部中[ | 非洲爪蟾卵母细胞:Na+转运[ |
图2 HKT1在Na+长距离运输中的作用 在拟南芥中,地上部分的过量的Na+通过HKT1蛋白运输到韧皮部,而后通过韧皮部向下运输到根中,这被称为“再循环”模型;而根中的HKT1将Na+从木质部中运输到木质部薄壁细胞,避免Na+通过木质部中的蒸腾流向上运输到地上部分,这被称为“外排”模型。而HKT1在茎中维管束的定位,则有力的支持了Christa Testerink提出的HKT1在拟南芥Na+长距离运输中的观点,即在拟南芥中,“外排”模型与“再循环”模型可能同时存在
Fig. 2 The role of HKT1 in Na+ long-distance transportation In Arabidopsis,the excess Na+ in the aerial part is transported to the phloem through the HKT1 protein,and then transported down to the root through the phloem,which is called a”recirculation” model. The HKT1 in the root transports Na+ from the xylem to the parenchyma cells of the xylem,and prevents Na+ from being transported upwards to the above-ground part through transpiration in the xylem. This is called the “exhaust” model. The positioning of HKT1 in the vascular bundles in the stem strongly supports Christa Testerink’s view of HKT1 in Arabidopsis Na + long-distance transportation,that is,in Arabidopsis,the “exhaust” model and the “recirculation” model may be at the same time
图3 植物细胞离子响应策略以及HKT1表达调控途径 细细胞中存在的与盐胁迫有关的离子转运蛋白,一部分定位在细胞膜上,参与钠钾平衡的维持过程;一部分定位在囊泡膜与液泡膜上,参与Na+在细胞内的固存。而参与HKT1表达调控的各类因子成分复杂,植物激素(细胞分裂素),第二信使(Ca+,ROS)、表观调控因子(SUVH7)不同程度的同时参与该过程,且最终对HKT1的影响效果也不同。除了在表达过程中进行调控,HKT1蛋白在细胞膜上还受PP2C49的直接抑制
Fig. 3 Plant cell ion response strategy and HKT1 expression regulation pathway Some ion transporters related to salt stress in cells are located on the cell membrane and participate in the maintenance of sodium and potassium balance;some are located on the vesicle membrane and the vacuole membrane and participate in the retention of Na+ in the cell. The various factors involved in the regulation of HKT1 expression are complex. Plant hormones(cytokinins),second messengers(Ca+,ROS),and apparent regulatory factors(SUVH7)participate in the process at the same time to varying degrees,and ultimately affect HKT1 and the effect is also different. In addition to regulation during the expression process,HKT1 protein is directly inhibited by PP2C49 on the cell membrane
[1] |
Van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71(1):403-433.
doi: 10.1146/annurev-arplant-050718-100005 URL |
[2] | Zhang J, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynjournal Research, 2013, 115(1):1-22. |
[3] |
Wang Q, Guan C, Wang P, et al. The effect of AtHKT1;1 or AtSOS1 mutation on the expressions of Na+ or K+ transporter genes and Ion homeostasis in Arabidopsis thaliana under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5):523-534.
doi: 10.3390/ijms20030523 URL |
[4] |
Jarvis D, Ryu C, Beilstein M, et al. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula[J]. Molecular Biology and Evolution, 2014, 31(8):2094-2107.
doi: 10.1093/molbev/msu152 URL |
[5] | Li N, Du C, Ma B, et al. Functional analysis of ion transport properties and salt tolerance mechanisms of RtHKT1 from the recretohalophyte Reaumuria trigyna[J]. Plant & Cell Physiology, 2019, 60(1):85-106. |
[6] |
Ali A, Maggio A, Bressan RA, et al. Role and functional differences of HKT1-type transporters in plants under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5):101-112.
doi: 10.3390/ijms20010101 URL |
[7] |
Li N, Wang X, Ma B, et al. Expression of a Na/H antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2017, 218:109-120.
doi: 10.1016/j.jplph.2017.07.015 URL |
[8] |
Yokoi S, Quintero F, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. The Plant Journal, 2002, 30(5):529-539.
doi: 10.1046/j.1365-313X.2002.01309.x URL |
[9] | Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24):14150-14155. |
[10] |
Almeida P, Katschnig D, De Boer A. HKT transporters—State of the art[J]. International Journal of Molecular Sciences, 2013, 14(10):20359-20385.
doi: 10.3390/ijms141020359 pmid: 24129173 |
[11] |
Horie T, Hauser F, Schroeder J. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science, 2009, 14(12):660-668.
doi: 10.1016/j.tplants.2009.08.009 URL |
[12] |
Henderson S, Dunlevy J, Wu Y, et al. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks[J]. The New Phytologist, 2018, 217(3):1113-1127.
doi: 10.1111/nph.14888 pmid: 29160564 |
[13] | Mäser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):6428-6433. |
[14] |
Ali A, Raddatz N, Aman R, et al. A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance[J]. Plant Physiology, 2016, 171(3):2112-2126.
doi: 10.1104/pp.16.00569 URL |
[15] |
Fairbairn D, Liu W, Schachtman D, et al. Characterisation of two distinct HKT1-like potassium transporters from eucalyptus camaldulensis[J]. Plant Molecular Biology, 2000, 43(4):515-525.
doi: 10.1023/A:1006496402463 URL |
[16] |
Su H, Balderas E, Vera-Estrella R, et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Molecular Biology, 2003, 52(5):967-980.
doi: 10.1023/A:1025445612244 URL |
[17] |
Ali Z, Park H, Ali A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl[J]. Plant Physiology, 2012, 158(3):1463-1474.
doi: 10.1104/pp.111.193110 URL |
[18] | Ali A, Yun D. Differential selection of sodium and potassium ions by TsHKT1;2[J]. Plant Signaling & Behavior, 2016, 11(8):e1206169. |
[19] |
Kawakami Y, Imran S, Katsuhara M, et al. Na+ transporter SvHKT1;1 from a halophytic turf grass is specifically upregulated by high Na concentration and regulates shoot Na concentration[J]. International Journal of Molecular Sciences, 2020, 21(17):232-243.
doi: 10.3390/ijms21010232 URL |
[20] |
Uozumi N, Kim E, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiology, 2000, 122(4):1249-1259.
doi: 10.1104/pp.122.4.1249 URL |
[21] |
Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells[J]. The Plant Journal, 2005, 44(6):928-938.
doi: 10.1111/tpj.2005.44.issue-6 URL |
[22] |
Campbell M, Bandillo N, Al Shiblawi F, et al. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice(Oryza sativa)for root sodium content[J]. PLoS Genetics, 2017, 13(6):e1006823.
doi: 10.1371/journal.pgen.1006823 URL |
[23] |
Imran S, Horie T, Katsuhara M. OsHKT1;1 expression and ion transport activity of rice variants[J]. Plants, 2019, 9(1):435-445.
doi: 10.3390/plants9040435 URL |
[24] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[25] |
Khan I, Mohamed S, Regnault T, et al. Constitutive contribution by the rice OsHKT1;4 Na+ transporter to xylem sap desalinization and low Na+ accumulation in young leaves under low as high external Na conditions[J]. Frontiers in Plant Science, 2020, 11:1130.
doi: 10.3389/fpls.2020.01130 URL |
[26] |
Plett D, Safwat G, Gilliham M, et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1[J]. PLoS One, 2010, 5(9):e12571.
doi: 10.1371/journal.pone.0012571 URL |
[27] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[28] |
James R, Blake C, Byrt C, et al. Major genes for Na+ exclusion, Nax1 and Nax2(wheat HKT1;4 and HKT1;5), decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions[J]. Journal of Experimental Botany, 2011, 62(8):2939-2947.
doi: 10.1093/jxb/err003 URL |
[29] |
Laurie S, Feeney K, Maathuis F, et al. A role for HKT1 in sodium uptake by wheat roots[J]. The Plant Journal, 2002, 32(2):139-149.
doi: 10.1046/j.1365-313X.2002.01410.x URL |
[30] |
Byrt C, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat[J]. The Plant Journal, 2014, 80(3):516-526.
doi: 10.1111/tpj.2014.80.issue-3 URL |
[31] |
Ben Amar S, Brini F, Sentenac H, et al. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters[J]. Journal of Experimental Botany, 2014, 65(1):213-222.
doi: 10.1093/jxb/ert361 URL |
[32] | Asins M, Villalta I, Aly M, et al. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+ /K+ homeostasis[J]. Plant, Cell & Environment, 2013, 36(6):1171-1191. |
[33] |
Van Bezouw R, Janssen E, Ashrafuzzaman M, et al. Shoot sodium exclusion in salt stressed barley(Hordeum vulgare L.)is determined by allele specific increased expression of HKT1;5[J]. Journal of Plant Physiology, 2019, 241:153029.
doi: 10.1016/j.jplph.2019.153029 URL |
[34] |
Haro R, Bañuelos M, Senn M, et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast[J]. Plant Physiology, 2005, 139(3):1495-1506.
doi: 10.1104/pp.105.067553 URL |
[35] |
Santa-María G, Danna C, Czibener C. High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways[J]. Plant Physiology, 2000, 123(1):297-306.
doi: 10.1104/pp.123.1.297 URL |
[36] |
Hill C, Jha D, Bacic A, et al. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains[J]. Molecular Plant, 2013, 6(2):350-368.
doi: 10.1093/mp/sss125 URL |
[37] | Yang C, Zhao L, Zhang H, et al. Evolution of physiological responses to salt stress in hexaploid wheat[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32):11882-11887. |
[38] |
Møller I, Gilliham M, Jha D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7):2163-2178.
doi: 10.1105/tpc.108.064568 URL |
[39] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[40] |
De Luca A, Pardo J, Leidi E. Pleiotropic effects of enhancing vacuolar K/H exchange in tomato[J]. Physiologia Plantarum, 2018, 163(1):88-102.
doi: 10.1111/ppl.2018.163.issue-1 URL |
[41] |
Rubio F, Gassmann W, Schroeder J. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science, 1995, 270(5242):1660-1663.
doi: 10.1126/science.270.5242.1660 URL |
[42] |
Julkowska M, Koevoets I, Mol S, et al. Genetic components of root architecture remodeling in response to salt stress[J]. The Plant Cell, 2017, 29(12):3198-3213.
doi: 10.1105/tpc.16.00680 URL |
[43] |
Rus A, Lee B, Muñoz-Mayor A, et al. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta[J]. Plant Physiology, 2004, 136(1):2500-2511.
doi: 10.1104/pp.104.042234 URL |
[44] |
Haseloff J. GFP variants for multispectral imaging of living cells[J]. Methods in Cell Biology, 1999, 58:139-151.
pmid: 9891379 |
[45] | An D, Chen J, Gao Y. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genetics, 2017,13(10):e1007086. |
[46] |
Essah P, Davenport R, Tester M. Sodium influx and accumulation in Arabidopsis[J]. Plant Physiology, 2003, 133(1):307-318.
doi: 10.1104/pp.103.022178 URL |
[47] |
Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9):2004-2014.
doi: 10.1093/emboj/cdg207 URL |
[48] | Davenport R, Muñoz-Mayor A, Jha D, et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidop-sis[J]. Plant, Cell & Environment, 2007, 30(4):497-507. |
[49] |
Wang L, Liu Y, Feng S, et al. AtHKT1 gene regulating K+ state in whole plant improves salt tolerance in transgenic tobacco plants[J]. Scientific Reports, 2018, 8(1):16585.
doi: 10.1038/s41598-018-34660-9 URL |
[50] |
Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. The Plant Journal, 2001, 27(2):129-138.
doi: 10.1046/j.1365-313x.2001.01077.x URL |
[51] |
Huang S, Spielmeyer W, Lagudah E, et al. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance[J]. Journal of Experimental Botany, 2008, 59(4):927-937.
doi: 10.1093/jxb/ern033 URL |
[52] |
Byrt C, Platten J, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1[J]. Plant Physiology, 2007, 143(4):1918-1928.
doi: 10.1104/pp.106.093476 URL |
[53] |
Zhu M, Shabala L, Cuin T, et al. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat[J]. Journal of Experimental Botany, 2016, 67(3):835-844.
doi: 10.1093/jxb/erv493 URL |
[54] |
Huang L, Kuang L, Wu L, et al. The HKT transporter HvHKT1;5 negatively regulates salt tolerance[J]. Plant Physiology, 2020, 182(1):584-596.
doi: 10.1104/pp.19.00882 URL |
[55] | Wang Z, Hong Y, Li Y, et al. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication[J]. Plant Biotechnology Journal, 2020, 124(3):177-185. |
[56] | Wang Z, Hong Y, Zhu G, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. The EMBO Journal, 2020, 39(10):e103256. |
[57] | Jaime-Pérez N, Pineda B, García-Sogo B, et al. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity[J]. Plant, Cell & Environment, 2017, 40(5):658-671. |
[58] |
Miller G, Suzuki N, Rizhsky L, et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses[J]. Plant Physiology, 2007, 144(4):1777-1785.
doi: 10.1104/pp.107.101436 URL |
[59] |
Kaye Y, Golani Y, Singer Y, et al. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis[J]. Plant Physiology, 2011, 157(1):229-241.
doi: 10.1104/pp.111.176883 URL |
[60] |
Chakraborty K, Bose J, Shabala L, et al. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species[J]. Journal of Experimental Botany, 2016, 67(15):4611-4625.
doi: 10.1093/jxb/erw236 URL |
[61] |
Jiang C, Belfield E, Mithani A, et al. ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis[J]. The EMBO Journal, 2012, 31(22):4359-4370.
doi: 10.1038/emboj.2012.273 URL |
[62] | Zhao R, Sun H, Mei C, et al. The Arabidopsis Ca(2+)-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth[J]. New Phytologist, 2011, 192(1):61-73. |
[63] |
Shkolnik D, Finkler A, Pasmanik-Chor M, et al. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6:A key regulator of Na + homeostasis during germination[J]. Plant Physiology, 2019, 180(2):1101-1118.
doi: 10.1104/pp.19.00119 URL |
[64] |
Yang M, Lu K, Zhao F, et al. Genome-wide association studies reveal the genetic basis of ionomic variation in rice[J]. The Plant Cell, 2018, 30(11):2720-2740.
doi: 10.1105/tpc.18.00375 URL |
[65] |
Shen Q, Fu L, Su T, et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4[J]. Plant Physiology, 2020, 183(4):1650-1662.
doi: 10.1104/pp.20.00196 URL |
[66] | Tran L, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51):20623-20628. |
[67] |
Mason M, Jha D, Salt D, et al. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots[J]. The Plant Journal, 2010, 64(5):753-763.
doi: 10.1111/tpj.2010.64.issue-5 URL |
[68] |
Brenner W, Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses[J]. BMC Plant Biology, 2012, 12:112.
doi: 10.1186/1471-2229-12-112 URL |
[69] |
Zhang H, Kim M, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions, 2008, 21(6):737-744.
doi: 10.1094/MPMI-21-6-0737 URL |
[70] | Chu ML, Chen PW, Meng SF, et al. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1[J]. Journal of Integrative Plant Biology, 2020. DOI: 10.111/jipb.13008. |
[71] |
Wang J, Nan N, Li N, et al. OsHKT1;5A DNA methylation reader-chaperone regulator-transcription factor complex activates expres-sion during salinity stress[J]. The Plant Cell, 2020, 32(11):3535-3558.
doi: 10.1105/tpc.20.00301 URL |
[72] | Busoms S, Paajanen P, Marburger S, et al. Arabidopsis thaliana fluctuating selection on migrant adaptive sodium transporter alleles in coastal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):E12443-E12452. |
[73] | Kotula L, Garcia Caparros P, Zörb C, et al. Improving crop salt tolerance using transgenic approaches:An update and physiological analysis[J]. Plant, Cell & Environment, 2020. 43(12):2932-2956. |
[74] |
Xu B, Waters S, Byrt C, et al. Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity[J]. Cellular and Molecular Life Sciences, 2018, 75(6):1133-1144.
doi: 10.1007/s00018-017-2716-5 URL |
[75] |
Amarasinghe S, Watson-Haigh N, Gilliham M, et al. The evolutionary origin of CIPK16:A gene involved in enhanced salt tolerance[J]. Molecular Phylogenetics and Evolution, 2016, 100:135-147.
doi: 10.1016/j.ympev.2016.03.031 URL |
[76] | Roy S, Huang W, Wang X, et al. A novel protein kinase involved in Na+ exclusion revealed from positional cloning[J]. Plant, Cell & Environment, 2013, 36(3):553-568. |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[3] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[4] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[5] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[6] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[7] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[8] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[9] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
[10] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
[11] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
[12] | 马亚男, 卢旭, 魏云春, 李康, 魏若男, 李胜, 马绍英. 葡萄AKR基因家族的鉴定和组织特异性表达分析[J]. 生物技术通报, 2021, 37(8): 141-151. |
[13] | 刘娟, 朱春晓, 肖雪琼, 莫陈汨, 王高峰, 肖炎农. 淡紫紫孢菌亲环蛋白PlCYP6 互作蛋白的筛选[J]. 生物技术通报, 2021, 37(7): 137-145. |
[14] | 王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186. |
[15] | 李娥, 黄勇, 孟园园, 李璇, 杜光辉, 刘飞虎. 盐胁迫条件下‘巴麻火麻’内生真菌的分离鉴定与多样性分析[J]. 生物技术通报, 2021, 37(10): 26-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||