生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 225-235.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1389
收稿日期:
2020-11-15
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
乌凤章,男,博士,副教授,研究方向:植物逆境生理与分子生物学;E-mail: 基金资助:
Received:
2020-11-15
Published:
2021-06-26
Online:
2021-07-08
摘要:
低温胁迫限制植物的生长发育及其地理分布。不同物种在低温胁迫反应过程中发生了重大的转录组重新编程,许多蛋白质被认为是这种适应性反应的重要因子。泛素化是一种翻译后修饰,能够调控蛋白的丰度、活性、亚细胞区隔和转运,并参与低温应答过程。E3是泛素-蛋白酶体系统的主要组成部分,识别目标蛋白,并将泛素从E2上转移到目标蛋白上。由于E3具有底物识别的特异性,从而调控植物多种低温胁迫反应相关的信号通路。以此为基础,总结了参与泛素-蛋白酶体系统的组成成分,并详细阐述了E3在低温胁迫反应中的作用。
乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235.
WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant[J]. Biotechnology Bulletin, 2021, 37(6): 225-235.
类型 Type | 泛素连接酶 Ub-ligase | 靶目标 Target(s) | 物种 Species | 一般性功能描述 General function description | 参考文献 References |
---|---|---|---|---|---|
RING | HOS1 | ICE1 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [22] |
MaSINA1 | MaICE1 | 香蕉 Musa acuminata | 负调控耐冷性 Negatively regulate chilling tolerance | [32] | |
MdMIEL1 | MdMYB308L | 苹果 Malus domestica | 负调控抗冻性 Negatively regulate freezing resistance | [31] | |
SAP9 | Rad23d | 拟南芥 Arabidopsis thaliana | 正调控抗寒性 Positively regulates cold resistance | [61] | |
U-box | CaPUB1 | RPN6 | 水稻 Oryza sativa | 正调控耐冷性 Positively regulates chilling tolerance | [56] |
PUB25/26 | MYB15 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [29] | |
AtCHIP | PP2A | 拟南芥 Arabidopsis thaliana | 负调控耐冷性 Negatively regulate chilling tolerance | [60] | |
SCF | EBF1/2 | PIF3 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [30] |
EBF1/2 | EIN3/EIL1 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [49-50] | |
FBP7 | LOS1? | 拟南芥 Arabidopsis thaliana | 负调控耐冷性 Negatively regulate chilling tolerance | [55] | |
COI1 | JAZs | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [51,53] | |
DDB | COP1 | HY5 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [34] |
BTB | ETO1/EOL1/2 | ACS5 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [45] |
表1 参与植物低温胁迫反应的E3连接酶的一般性功能描述
Table 1 General functional descriptions of the E3 ligases involved low temperature stress responses in plant
类型 Type | 泛素连接酶 Ub-ligase | 靶目标 Target(s) | 物种 Species | 一般性功能描述 General function description | 参考文献 References |
---|---|---|---|---|---|
RING | HOS1 | ICE1 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [22] |
MaSINA1 | MaICE1 | 香蕉 Musa acuminata | 负调控耐冷性 Negatively regulate chilling tolerance | [32] | |
MdMIEL1 | MdMYB308L | 苹果 Malus domestica | 负调控抗冻性 Negatively regulate freezing resistance | [31] | |
SAP9 | Rad23d | 拟南芥 Arabidopsis thaliana | 正调控抗寒性 Positively regulates cold resistance | [61] | |
U-box | CaPUB1 | RPN6 | 水稻 Oryza sativa | 正调控耐冷性 Positively regulates chilling tolerance | [56] |
PUB25/26 | MYB15 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [29] | |
AtCHIP | PP2A | 拟南芥 Arabidopsis thaliana | 负调控耐冷性 Negatively regulate chilling tolerance | [60] | |
SCF | EBF1/2 | PIF3 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [30] |
EBF1/2 | EIN3/EIL1 | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [49-50] | |
FBP7 | LOS1? | 拟南芥 Arabidopsis thaliana | 负调控耐冷性 Negatively regulate chilling tolerance | [55] | |
COI1 | JAZs | 拟南芥 Arabidopsis thaliana | 正调控抗冻性 Positively regulates freezing resistance | [51,53] | |
DDB | COP1 | HY5 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [34] |
BTB | ETO1/EOL1/2 | ACS5 | 拟南芥 Arabidopsis thaliana | 负调控抗冻性 Negatively regulate freezing resistance | [45] |
图1 蛋白质泛素化修饰调节CBF依赖的低温信号途径 CBFs转录因子负责调控其启动子中含有CRT/DRE(CCGAC)基序的COR基因。CBFs被ICE1和CAMTA转录因子激活,而被MYB15抑制。HOS1和SIZ1分别编码RING E3和SUMO E3,负调控ICE1蛋白的丰度。OST1是一种正调控ICE1蛋白丰度的激酶。弯箭头表示翻译后调节,实箭头表示促进作用,T形线表示抑制作用。下同
Fig. 1 Protein ubiquitination regulates the CBF-dependent low temperature signaling pathway CBFs transcription factors are responsible for the regulation of COR genes containing CRT/DRE(CCGAC)motifs in their promoters. CBFs are activated by ICE1 and CAMTA transcription factors,whereas repressed by MYB15. HOS1 and SIZ1 encode RING E3 ligase and SUMO E3 ligase,respectively,which antagonistically regulate the abundance of ICE1 protein. OST1 is a kinase that positively regulates the abundance of the ICE1 protein. Crooked arrows indicate post-translational regulation,and solid arrows indicate activation. T-shaped bars represent repression;the solid line represent direct interaction. The same below
图2 E3s参与乙烯途径调控拟南芥抗冻性示意图 在乙烯生物合成方面,E3s ETO1和EOL1/2与ACS5相互作用并通过蛋白酶体依赖途径降解而抑制其活性,介导乙烯生物合成。在乙烯生物合信号转导方面,在没有乙烯的情况下,高度磷酸化的乙烯受体激活CTR1激酶活性,进而磷酸化EIN2,可能导致由F-box蛋白EPT1和EPT2介导的EIN2的降解。同时,EIN3/EILs也受到F-box蛋白EBF1和EBF2介导的蛋白酶体降解。在乙烯存在的情况下,乙烯与受体的结合抑制受体的磷酸化,从而使受体失活,结果导致CTR1失活。去磷酸化的EIN2因此被剪切,其C端结构域转移到细胞核中,导致EIN3/EILs和下游转录级联的激活,最终调控抗冻性反应
Fig. 2 Schematic diagram depicts the involvement of E3s in regulation of freezing stress tolerance by the ethylene(ET)pathway in Arabidopsis In the biosynthesis of ethylene,the ETO1,EOL1 and EOL2 modulate ET biosynthesis by interacting with the ET biosynthetic enzyme ACS5 and inhibiting its activity by proteasome-dependent degradation. In the signal transductions of ethylene,in the absence of ethylene,the highly phosphorylated ethylene receptors activate CTR1 kinase activity,which in turn phosphorylates EIN2,likely causing the degradation of EIN2 by F-box proteins EPT1 and EPT2. Meanwhile,EIN3/EILs are also subjected to proteasomal degradation mediated by F-box proteins EBF1 and EBF2. In the presence of ethylene,ethylene binding inactivates the receptors by suppressing its phosphorylation,which consequently leads to deactivation of CTR1. The un-phosphorylated EIN2 is thus cleaved and its C-terminal domain is translocated into the nucleus,resulting in activation of EIN3/EILs and downstream transcriptional cascades. Finally,they regulate the freezing stress tolerance response
[1] |
Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5):635-674.
doi: 10.1007/s11427-020-1683-x URL |
[2] |
Liu J, Shi Y, Yang S. Insights into the regulation of CBF cold signaling in plants[J]. Journal of Integrative Plant Biology, 2018, 60(9):780-795.
doi: 10.1111/jipb.12657 URL |
[3] |
Pearce RS. Plant freezing and damage[J]. Annals of Botany, 2001, 87(4):417-424.
doi: 10.1006/anbo.2000.1352 URL |
[4] |
Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annual Review Plant Physiology and Molecular Biology, 1984, 35(1):543-584.
doi: 10.1146/annurev.pp.35.060184.002551 URL |
[5] |
Thomashow MF. Plant cold acclimation:freezing tolerante genes and regulatory mechanisms[J]. Annual Review Plant Physiology and Molecular Biology, 1999, 50:571-599.
doi: 10.1146/annurev.arplant.50.1.571 URL |
[6] |
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007, 12(10):444-451.
doi: 10.1016/j.tplants.2007.07.002 URL |
[7] |
Xiong LM, Schumaker KS, Zhu JK. Cell signaling during cold, drough, and salt stress[J]. The Plant Cell, 2002, 14:165-183.
doi: 10.1105/tpc.010278 URL |
[8] |
Winfield MO, Lu C, Wilson ID, et al. Plant responses to cold:transcriptome analysis of wheat[J]. Plant Biotechnology Journal, 2010, 8(7):749-771.
doi: 10.1111/pbi.2010.8.issue-7 URL |
[9] |
Thomashow MF. Molecular basis of plant cold acclimation:insights gained from studying the CBF cold response pathway[J]. Plant Physiology, 2010, 154(2):571-577.
doi: 10.1104/pp.110.161794 URL |
[10] |
Catalá R, Salinas J. Regulatory mechanisms involved in cold acclimation response[J]. Spanish Journal of Agricultural Research, 2008, 6:211-220.
doi: 10.5424/sjar/200806S1-390 URL |
[11] |
Nakasone MA, Livnat-Levanon N, Glickman MH, et al. Mixed-linkage ubiquitin chains send mixed messages[J]. Structure, 2013, 21(5):727-740.
doi: 10.1016/j.str.2013.02.019 pmid: 23562397 |
[12] |
Komander D, Rape M. The ubiquitin code[J]. Annu Rev Biochem, 2012, 81(1):203-229.
doi: 10.1146/annurev-biochem-060310-170328 URL |
[13] |
Thrower JS, Hoffman L, Rechsteiner M, et al. Recognition of the polyubiquitin proteolytic signal[J]. The EMBO Journal, 2000, 19(1):94-102.
doi: 10.1093/emboj/19.1.94 URL |
[14] | Chen Q, Yang X, Xie Q. Approaches to determine protein ubiquitination residue types[M]// Lois LM, Matthiesen R. Plant Proteostasis:Methods and Protocols, Methods in Molecular Biology, New York: Humana Press, 2016:3-10. |
[15] | Isono E, Nagel MK. Deubiquitylating enzymes and their emerging role in plant biology[J]. Frontiers in Plant Science, 2014, 5:56-62. |
[16] |
Vierstra RD. The expanding universe of ubiquitin and ubiquitinlike modifiers[J]. Plant Physiology, 2012, 160(1):2-14.
doi: 10.1104/pp.112.200667 URL |
[17] | Morreale FE, Walden H. SnapShot:Types of ubiquitin ligases[J]. Cell, 2016, 165:48-248. |
[18] |
Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6):385-397.
doi: 10.1038/nrm2688 URL |
[19] |
Biedermann S, Hellmann H. WD40 and CUL4-based E3 ligases:lubricating all of aspects life[J]. Trends in Plant Science, 2011, 16(11):38-46.
doi: 10.1016/j.tplants.2010.09.007 URL |
[20] | 王丰, 施一公. 26S蛋白酶体的结构生物学研究进展[J]. 中国科学:生命科学, 2014, 44:965-974. |
Wang F, Shi YG. Progress in structural biology of 26S proteasome[J]. Scientia Sinica Vitae, 2014, 44:965-974.
doi: 10.1360/052014-162 URL |
|
[21] |
Jia Y, Ding Y, Shi Y, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New Phytologist, 2016, 212(2):345-353.
doi: 10.1111/nph.2016.212.issue-2 URL |
[22] | Dong CH, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21):8281-8286. |
[23] |
Ding Y, Li H, Zhang X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Developmental Cell, 2015, 32(9):278-289.
doi: 10.1016/j.devcel.2014.12.023 URL |
[24] |
Miura K, Ohta M, Nakazawa M, et al. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance[J]. The Plant Journal, 2011, 67(2):269-279.
doi: 10.1111/tpj.2011.67.issue-2 URL |
[25] |
Miura K, Jin JB, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2007, 19:1403-1414.
doi: 10.1105/tpc.106.048397 URL |
[26] |
Zhan X, Zhu JK, Lang Z. Increasing freezing tolerance:kinase regulation of ICE1[J]. Developmental Cell, 2015, 32(3):257-258.
doi: 10.1016/j.devcel.2015.01.004 URL |
[27] | Ye K, Li H, Ding Y, et al. BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis[J]. The Plant Cell, 2019, 31(9):2682-2696. |
[28] |
Liu Z, Jia Y, Ding Y, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Molecular Cell, 2017, 66(1):117-128.
doi: 10.1016/j.molcel.2017.02.016 URL |
[29] |
Wang X, Ding Y, Li Z, et al. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15[J]. Developmental Cell, 2019, 51(2):222-235.
doi: 10.1016/j.devcel.2019.08.008 URL |
[30] | Jiang B, Shi Y, Zhang X, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32):6695-6702. |
[31] |
An JP, Wang XF, Zhang XW, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation[J]. Plant Biotechnology Journal, 2020, 18(2):337-353.
doi: 10.1111/pbi.v18.2 URL |
[32] |
Fan ZQ, Chen JY, Kuang JF, et al. The banana fruit SINA ubiquitin ligase MaSINA1 regulates the stability of MaICE1 to be negatively involved in cold stress response[J]. Frontiers in Plant Science, 2017, 8:995-1007.
doi: 10.3389/fpls.2017.00995 URL |
[33] |
Lau OS, Deng X. Plant hormone signaling lightens up:integrators of light and hormones[J]. Current Opinion in Plant Biology, 2010, 13(5):571-577.
doi: 10.1016/j.pbi.2010.07.001 URL |
[34] | Catalá R, Medina J, Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39):16475-16480. |
[35] |
Catalá R, López-Cobollo R, Mar Castellano M, et al. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynjournal to regulate freezing tolerance and cold acclimation[J]. The Plant Cell, 2014, 26:3326-3342.
doi: 10.1105/tpc.114.127605 URL |
[36] |
Zhao M, Liu W, Xia X, et al. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene[J]. Physiologia Plantarum, 2014, 152(1):115-129.
doi: 10.1111/ppl.12161 URL |
[37] |
Zhao D, Shen L, Fan B, et al. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits[J]. FEBS Letters, 2009, 583(20):3329-3334.
doi: 10.1016/j.febslet.2009.09.029 URL |
[38] |
Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato Overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynjournal[J]. Plant Molecular Biology, 2010, 73(3):241-249.
doi: 10.1007/s11103-010-9609-4 URL |
[39] |
Munshaw GC, Ervin EH, Beasley JS, et al. Effects of late-season ethephon applications on cold tolerance parameters of four bermudagrass cultivars[J]. Crop Science, 2010, 50(3):1022-1029.
doi: 10.2135/cropsci2008.09.0565 URL |
[40] |
Shi YT, Tian SW, Hou LY, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. The Plant Cell, 2012, 24(6):2578-2595.
doi: 10.1105/tpc.112.098640 URL |
[41] |
Janowiak F, Dorffling K. Chilling-induced changes in the contents of 1-aminocyclopropane-1-carboxylic acid(ACC)and its N-malonyl conjugate(MACC)in seedlings of two maize inbreds differing in chilling tolerance[J]. Journal of Plant Physiology, 1995, 147(2):257-262.
doi: 10.1016/S0176-1617(11)81514-2 URL |
[42] |
Yang SF, Hoffman NE. Ethylene biosynjournal and its regulation in higher-plants[J]. Annual Review of Plant Physiology, 1984, 35(1):155-189.
doi: 10.1146/annurev.pp.35.060184.001103 URL |
[43] |
Gingerich DJ, Gagne JM, Salter DW, et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac(BTB)protein family to form essential ubiquitinprotein ligases(E3s)in Arabidopsis[J]. The Journal of Biological Chemistry, 2005, 280(4):18810-18821.
doi: 10.1074/jbc.M413247200 URL |
[44] |
Wang KL, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynjournal by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428:945-950.
doi: 10.1038/nature02516 URL |
[45] |
Christians MJ, Gingerich DJ, Hansen M, et al. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynjournal in Arabidopsis by controlling type-2 ACC synthase levels[J]. The Plant Journal, 2009, 57(2):332-345.
doi: 10.1111/j.1365-313X.2008.03693.x pmid: 18808454 |
[46] | Catalá R, Salinas J. The Arabidopsis ethylene overproducer mutant eto1-3 displays enhanced freezing tolerance[J]. Plant Signaling & Behavior, 2015, 10(3):e989768. |
[47] | Ju C, Yoon GM, Shemansky JM, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene mone signaling from hebrane to the nucleus in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47):9486-19491. |
[48] |
Qiao H, Chang KN, Yazaki J, et al. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers thylene responses in Arabidopsis[J]. Genes & Development, 2009, 23:512-521.
doi: 10.1101/gad.1765709 URL |
[49] |
Wen X, Zhang C, Ji Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012, 22(11):1613-1616.
doi: 10.1038/cr.2012.145 URL |
[50] |
Potuschak T, Lechner E, Parmentier Y, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F-box proteins:EBF1 and EBF2[J]. Cell, 2003, 115(6):679-689.
pmid: 14675533 |
[51] |
Hu Y, Jiang L, Wang F, et al. Jasmonate regulates the inducer of cbf expression- C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arobidopsis[J]. The Plant Cell, 2013, 25:2907-2924.
doi: 10.1105/tpc.113.112631 URL |
[52] | Du H, Liu HB, Xiong LZ. Endogenous auxin and jasmonic acid levels differentially modulated by abiotic stresses in rice[J]. Frontiers in Plant Science, 2013, 4:389-397. |
[53] |
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends in Plant Science, 2015, 20(4):219-229.
doi: 10.1016/j.tplants.2015.02.001 URL |
[54] |
Calderón-Villalobos LA, Nill C, Marrocco K, et al. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress[J]. Gen, 2007, 392(1/2):106-116.
doi: 10.1016/j.gene.2006.11.016 URL |
[55] | Guo Y, Xiong L, Ishitani M, et al. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7786-7791. |
[56] |
Cho K SK, Chung HS, Ryu MY, et al. Heterologous expression molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog[J]. Plant Physiology, 2006, 142(4):1664-1682.
doi: 10.1104/pp.106.087965 URL |
[57] |
Bhattacharyya S, Yu H, Mim C. Regulated protein turnover:snapshots of the proteasome in action[J]. Nature Reviews Molecular Cell Biology, 2014, 15:122-133.
doi: 10.1038/nrm3741 URL |
[58] | Min HJ, Jung YJ, Kang BG, et al. CaPUB1, a hot pepper U-box E3 Ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice(Oryza sativa L.)[J]. Molecules & Cells, 2016, 39:250-257. |
[59] |
Yan J, Wang J, Li Q, et al. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis[J]. Plant Physiology, 2003, 132(2):861-869.
doi: 10.1104/pp.103.020800 URL |
[60] |
Luo J, Shen G, Yan J, et al. AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment[J]. The Plant Journal, 2006, 46(4):649-657.
doi: 10.1111/tpj.2006.46.issue-4 URL |
[61] | Kang M, Lee S, Abdelmageed H, et al. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway[J]. Plant, Cell & Environment, 2017, 40(5):702-716. |
[62] | 乌凤章, 王贺新. 笃斯越橘响应低温和短光周期的蛋白质组分析[J]. 园艺学报, 2019, 46(2):265-279. |
Wu FZ, Wang HX. Proteome analysis of response of Vaccinium uligiuosum L. seedlings to low-temperature and short photoperiod[J]. Acta Horticulturae Sinica, 2019, 46(2):265-279. | |
[63] |
Jiao L, Zhang YL, Wu J, et al. A novel U-boxprotein gene from“Zuoshanyi”grapevine(Vitis amurensis Rupr. cv.)involved in cold responsive gene expression in Arabidopsis thanliana[J]. Plant Molecular Biology Reporter, 2015, 33(3):557-568.
doi: 10.1007/s11105-014-0783-4 URL |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[4] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[5] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[6] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[7] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[8] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[9] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[10] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[11] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[12] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[13] | 崔洁冰, 张萌, 张莹婷, 徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报, 2022, 38(3): 31-40. |
[14] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
[15] | 李文姣, 张忠峰, 刘青, 孙洁, 杨利, 王兴军, 赵术珍. BRs在植物响应非生物胁迫中的作用[J]. 生物技术通报, 2022, 38(1): 228-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||