生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 197-211.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0590
收稿日期:
2021-05-04
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
刘潇菡,女,硕士,研究方向:植物分子生物学;E-mail: 基金资助:
LIU Xiao-han(), LIN Zi-xin, XIU Yu, DANG Yuan, LIN Shan-zhi()
Received:
2021-05-04
Published:
2021-11-26
Online:
2021-12-03
摘要:
山杏种子中的苦杏仁苷极大限制其油脂及其他相关产品的开发利用,而多药和有毒化合物排出(multidrug and toxic compound extrusion,MATE)转运蛋白可能在苦杏仁苷转运过程中起重要作用。运用生物信息学方法对山杏种子PsMATE家族成员进行预测分析,采用qRT-PCR技术对其在发育种子中的表达模式进行分析测定;利用qRT-PCR技术对PsMATE40进行组织特异性表达分析,使用GFP融合蛋白表达法对其进行亚细胞定位分析。基于实验室前期获得的山杏种子转录组数据,利用功能注释及生物信息学分析确定17个山杏种子PsMATE基因家族成员,可分为3个亚家族:亚家族1、亚家族2与亚家族4;上述基因编码蛋白二级结构以α-螺旋为主,含多个磷酸化位点;除PsMATE23、PsMATE33、PsMATE35A与PsMATE35B蛋白为酸性蛋白外,其余均为碱性蛋白;15个PsMATE蛋白为强疏水性跨膜转运蛋白,定位于质膜。qRT-PCR分析显示,PsMATE家族成员在山杏发育种子中均有表达,但不同发育期表达量差异显著,其中PsMATE40表达量在该家族基因中最高;结合系统发育结果,PsMATE40与已被鉴定具有苦杏仁苷转运的MATE蛋白聚类在一起,据此推测PsMATE40基因在山杏种子苦杏仁苷的转运中起重要作用;成功克隆获得PsMATE40基因序列;qRT-PCR分析表明,PsMATE40基因在山杏种子中表达量最高而在根中最低,表明PsMATE40表达具有组织特异性;构建植物表达载体pBI121-GFP-PsMATE40并瞬时转化烟草叶片,荧光显微镜检测PsMATE40转运蛋白定位于质膜。研究结果为阐明山杏种子苦杏仁苷的跨膜转运原理及分子定向培育低苦杏仁苷含量的油料植物奠定重要基础。
刘潇菡, 林子欣, 修宇, 党瑗, 林善枝. 山杏种子MATE家族分析及其重要成员MATE40克隆表达[J]. 生物技术通报, 2021, 37(11): 197-211.
LIU Xiao-han, LIN Zi-xin, XIU Yu, DANG Yuan, LIN Shan-zhi. Analysis of the MATE Family in the Seeds of Prunus sibirica and Cloning and Expression of Its Important Member MATE40[J]. Biotechnology Bulletin, 2021, 37(11): 197-211.
基因Gene | 引物序列Primer sequence(5'-3') | 基因Gene | 引物序列Primer sequence(5'-3') | |
---|---|---|---|---|
PsMATE14 | F:GAAGTGAAGAGGTTGGGATACATAG | PsMATE40 | F:AACAATGGCATCCAAGTTTTCGCCT | |
R:CAATCGCAGTGCTGGAAA | R:GGAGCACACCAGTCAAAGTTAAGAG | |||
PsMATE16A | F:ATGGATGCCGAAGAACAA | PsMATE41A | F:GAAGACACACTAAACAACCCTGAGC | |
R:GCTGCTTCTTCACTTCCTTGATAAT | R:TGAGCAAGTAAACCACCA | |||
PsMATE16B | F:AAGAAGTAAAGAAGCAGC | PsMATE41B | F:ATGGCGATGGCTTGGAGT | |
R:TTCACCAAGATGACCTAC | R:GGCGAAAGAGGAGATTGAGT | |||
PsMATE23 | F:TGGAGGGAGACCAAGACG | PsMATE41C | F:CAAGGCTGCTCTGGATTT | |
R:GAGCCAATGTGACCAATGAA | R:GCTCCAAGGCACTCAAAT | |||
PsMATE27 | F:TTCAACCGTCCAATCAAA | PsMATE48 | F:CTTCCTCATTTCTCCCTT | |
R:GGAATAAGACGCAACACG | R:TGGCCTTGATTTCTTGTA | |||
PsMATE32 | F:ATGGAGGATAAGAAGCAGC | PsMATE49 | F:TGCTCTACTCACGCACAA | |
R:GGAAATGAAAGAAGGGTGT | R:AATAGCAAGCGAACCACC | |||
PsMATE33 | F:CCTTGGGTGCTCTCACTCAGGTCTA | PsMATE51 | F:TCCTTCTGCTGCTTCATC | |
R:TGACACCGAAAGCGAGGC | R:TAATGGCGGTGTTTGGTA | |||
PsMATE35A | F:TATGTTTTGGATTGAGACAGTGAAG | PsMATE56 | F:TGCCAAGATAGCAACCAC | |
R:TTCCGAGATGACCAACAAAGAG | R:CACCACAGAGCCCATTTA | |||
PsMATE35B | F:GGTCGGTGACTTGGATAGA | UBC | F:GAGACCAGCAATAACCGTGAA | |
R:TGAAGGTTTCCGAGGTGT | R:TCTTGTACTCCGTGGCATCCT |
表1 qRT-PCR引物
Table 1 Primers used for qRT-PCR
基因Gene | 引物序列Primer sequence(5'-3') | 基因Gene | 引物序列Primer sequence(5'-3') | |
---|---|---|---|---|
PsMATE14 | F:GAAGTGAAGAGGTTGGGATACATAG | PsMATE40 | F:AACAATGGCATCCAAGTTTTCGCCT | |
R:CAATCGCAGTGCTGGAAA | R:GGAGCACACCAGTCAAAGTTAAGAG | |||
PsMATE16A | F:ATGGATGCCGAAGAACAA | PsMATE41A | F:GAAGACACACTAAACAACCCTGAGC | |
R:GCTGCTTCTTCACTTCCTTGATAAT | R:TGAGCAAGTAAACCACCA | |||
PsMATE16B | F:AAGAAGTAAAGAAGCAGC | PsMATE41B | F:ATGGCGATGGCTTGGAGT | |
R:TTCACCAAGATGACCTAC | R:GGCGAAAGAGGAGATTGAGT | |||
PsMATE23 | F:TGGAGGGAGACCAAGACG | PsMATE41C | F:CAAGGCTGCTCTGGATTT | |
R:GAGCCAATGTGACCAATGAA | R:GCTCCAAGGCACTCAAAT | |||
PsMATE27 | F:TTCAACCGTCCAATCAAA | PsMATE48 | F:CTTCCTCATTTCTCCCTT | |
R:GGAATAAGACGCAACACG | R:TGGCCTTGATTTCTTGTA | |||
PsMATE32 | F:ATGGAGGATAAGAAGCAGC | PsMATE49 | F:TGCTCTACTCACGCACAA | |
R:GGAAATGAAAGAAGGGTGT | R:AATAGCAAGCGAACCACC | |||
PsMATE33 | F:CCTTGGGTGCTCTCACTCAGGTCTA | PsMATE51 | F:TCCTTCTGCTGCTTCATC | |
R:TGACACCGAAAGCGAGGC | R:TAATGGCGGTGTTTGGTA | |||
PsMATE35A | F:TATGTTTTGGATTGAGACAGTGAAG | PsMATE56 | F:TGCCAAGATAGCAACCAC | |
R:TTCCGAGATGACCAACAAAGAG | R:CACCACAGAGCCCATTTA | |||
PsMATE35B | F:GGTCGGTGACTTGGATAGA | UBC | F:GAGACCAGCAATAACCGTGAA | |
R:TGAAGGTTTCCGAGGTGT | R:TCTTGTACTCCGTGGCATCCT |
基因 Gene | 标签 Label | 链 Strand | 阅读框 Reading frame | 起始 Start | 终止 Stop | 长度 Length/bp |
---|---|---|---|---|---|---|
PsMATE14 | ORF2 | + | 1 | 361 | 1 785 | 1 425 |
PsMATE16A | ORF7 | + | 3 | 66 | 1 535 | 1 470 |
PsMATE16B | ORF8 | + | 3 | 90 | 1 589 | 1 500 |
PsMATE23 | ORF1 | + | 1 | 469 | 1 956 | 1 488 |
PsMATE27 | ORF9 | + | 3 | 276 | 1 754 | 1 479 |
PsMATE32 | ORF6 | + | 3 | 39 | 1 653 | 1 614 |
PsMATE33 | ORF4 | + | 2 | 167 | 1 612 | 1 446 |
PsMATE35A | ORF1 | + | 1 | 40 | 1 521 | 1 482 |
PsMATE35B | ORF6 | + | 3 | 150 | 1 622 | 1 473 |
PsMATE40 | ORF9 | + | 3 | 234 | 1 790 | 1 557 |
PsMATE41A | ORF3 | + | 2 | 32 | 1 609 | 1 578 |
PsMATE41B | ORF5 | + | 3 | 51 | 1 577 | 1 527 |
PsMATE41C | ORF3 | + | 1 | 98 | 1 609 | 1 512 |
PsMATE48 | ORF2 | + | 2 | 95 | 1 744 | 1 650 |
PsMATE49 | ORF1 | + | 1 | 34 | 1 539 | 1 506 |
PsMATE51 | ORF1 | + | 2 | 194 | 1 831 | 1 638 |
PsMATE56 | ORF3 | + | 2 | 230 | 1 753 | 1 524 |
表2 山杏种子PsMATE家族基因序列分析
Table 2 Analysis of PsMATE family gene sequence in the seeds of P. sibirica
基因 Gene | 标签 Label | 链 Strand | 阅读框 Reading frame | 起始 Start | 终止 Stop | 长度 Length/bp |
---|---|---|---|---|---|---|
PsMATE14 | ORF2 | + | 1 | 361 | 1 785 | 1 425 |
PsMATE16A | ORF7 | + | 3 | 66 | 1 535 | 1 470 |
PsMATE16B | ORF8 | + | 3 | 90 | 1 589 | 1 500 |
PsMATE23 | ORF1 | + | 1 | 469 | 1 956 | 1 488 |
PsMATE27 | ORF9 | + | 3 | 276 | 1 754 | 1 479 |
PsMATE32 | ORF6 | + | 3 | 39 | 1 653 | 1 614 |
PsMATE33 | ORF4 | + | 2 | 167 | 1 612 | 1 446 |
PsMATE35A | ORF1 | + | 1 | 40 | 1 521 | 1 482 |
PsMATE35B | ORF6 | + | 3 | 150 | 1 622 | 1 473 |
PsMATE40 | ORF9 | + | 3 | 234 | 1 790 | 1 557 |
PsMATE41A | ORF3 | + | 2 | 32 | 1 609 | 1 578 |
PsMATE41B | ORF5 | + | 3 | 51 | 1 577 | 1 527 |
PsMATE41C | ORF3 | + | 1 | 98 | 1 609 | 1 512 |
PsMATE48 | ORF2 | + | 2 | 95 | 1 744 | 1 650 |
PsMATE49 | ORF1 | + | 1 | 34 | 1 539 | 1 506 |
PsMATE51 | ORF1 | + | 2 | 194 | 1 831 | 1 638 |
PsMATE56 | ORF3 | + | 2 | 230 | 1 753 | 1 524 |
图1 山杏种子PsMATE蛋白与其他植物MATE蛋白的系统发育树 At(Arabidopsis thaliana,拟南芥),Gm(Glycine max,大豆),Gr(Gossypium raimondii,雷蒙德氏棉),Lu(Linum usitatissimum,亚麻),Md(Malus domestica,苹果),Mt(Medicago truncatula,蒺藜苜蓿),Nt(Nicotiana tabacum,烟草),Os(Oryza sativa,水稻),Pt(Populus trichocarpa,毛果杨),Rc(Ricinus communis,蓖麻),Sb(Sorghum bicolor,双色高粱),Vc(Vaccinium corymbosum,蓝莓),Vv(Vitis vinifera,葡萄),Zm(Zea mays,玉米)
Fig. 1 Phylogenetic tree of MATE proteins from P. sibirica seeds and other plant species
基因 Gene | 氨基酸数 Number of amino acid/AA | 相对分子质量 Molecular weight/Da | 理论等电点 pI | 不稳定指数 Instability index | 脂肪族指数 Aliphatic index | 总平均亲水系数 Grand average of hydropathicity | 磷酸化位点数 Numbers of phosphorylation sites |
---|---|---|---|---|---|---|---|
PsMATE14 | 474 | 51 553.06 | 6.86 | 31.31(Ⅱ) | 122.62 | 0.769 | 34 |
PsMATE16A | 489 | 52 624.08 | 8.61 | 25.58(Ⅱ) | 118.45 | 0.632 | 30 |
PsMATE16B | 499 | 54 117.13 | 7.94 | 27.96(Ⅱ) | 120.92 | 0.700 | 42 |
PsMATE23 | 495 | 54 556.32 | 5.92 | 33.91(Ⅱ) | 122.63 | 0.662 | 38 |
PsMATE27 | 492 | 54 308.24 | 6.21 | 29.20(Ⅱ) | 115.16 | 0.723 | 37 |
PsMATE32 | 538 | 59 052.63 | 6.99 | 25.68(Ⅱ) | 114.20 | 0.640 | 31 |
PsMATE33 | 481 | 51 857.24 | 5.13 | 27.00(Ⅱ) | 123.43 | 0.820 | 24 |
PsMATE35A | 493 | 54 190.58 | 5.59 | 29.57(Ⅱ) | 126.61 | 0.891 | 32 |
PsMATE35B | 490 | 53 825.66 | 5.38 | 31.25(Ⅱ) | 122.98 | 0.761 | 37 |
PsMATE40 | 518 | 56 515.56 | 7.09 | 30.34(Ⅱ) | 120.29 | 0.676 | 40 |
PsMATE41A | 525 | 57 331.33 | 6.01 | 28.65(Ⅱ) | 117.56 | 0.663 | 41 |
PsMATE41B | 508 | 54 875.76 | 6.45 | 22.83(Ⅱ) | 123.25 | 0.722 | 35 |
PsMATE41C | 503 | 54 680.77 | 6.52 | 23.51(Ⅱ) | 129.30 | 0.835 | 37 |
PsMATE48 | 549 | 59 697.29 | 7.01 | 37.15(Ⅱ) | 110.87 | 0.485 | 48 |
PsMATE49 | 501 | 54 511.57 | 8.11 | 37.21(Ⅱ) | 122.67 | 0.626 | 32 |
PsMATE51 | 545 | 58 758.03 | 8.50 | 38.09(Ⅱ) | 113.32 | 0.517 | 56 |
PsMATE56 | 507 | 54 725.26 | 8.26 | 32.54(Ⅱ) | 123.49 | 0.708 | 33 |
表3 山杏种子PsMATE蛋白的理化特性
Table 3 Physical and chemical characters of PsMATE protein in the seeds of P. sibirica
基因 Gene | 氨基酸数 Number of amino acid/AA | 相对分子质量 Molecular weight/Da | 理论等电点 pI | 不稳定指数 Instability index | 脂肪族指数 Aliphatic index | 总平均亲水系数 Grand average of hydropathicity | 磷酸化位点数 Numbers of phosphorylation sites |
---|---|---|---|---|---|---|---|
PsMATE14 | 474 | 51 553.06 | 6.86 | 31.31(Ⅱ) | 122.62 | 0.769 | 34 |
PsMATE16A | 489 | 52 624.08 | 8.61 | 25.58(Ⅱ) | 118.45 | 0.632 | 30 |
PsMATE16B | 499 | 54 117.13 | 7.94 | 27.96(Ⅱ) | 120.92 | 0.700 | 42 |
PsMATE23 | 495 | 54 556.32 | 5.92 | 33.91(Ⅱ) | 122.63 | 0.662 | 38 |
PsMATE27 | 492 | 54 308.24 | 6.21 | 29.20(Ⅱ) | 115.16 | 0.723 | 37 |
PsMATE32 | 538 | 59 052.63 | 6.99 | 25.68(Ⅱ) | 114.20 | 0.640 | 31 |
PsMATE33 | 481 | 51 857.24 | 5.13 | 27.00(Ⅱ) | 123.43 | 0.820 | 24 |
PsMATE35A | 493 | 54 190.58 | 5.59 | 29.57(Ⅱ) | 126.61 | 0.891 | 32 |
PsMATE35B | 490 | 53 825.66 | 5.38 | 31.25(Ⅱ) | 122.98 | 0.761 | 37 |
PsMATE40 | 518 | 56 515.56 | 7.09 | 30.34(Ⅱ) | 120.29 | 0.676 | 40 |
PsMATE41A | 525 | 57 331.33 | 6.01 | 28.65(Ⅱ) | 117.56 | 0.663 | 41 |
PsMATE41B | 508 | 54 875.76 | 6.45 | 22.83(Ⅱ) | 123.25 | 0.722 | 35 |
PsMATE41C | 503 | 54 680.77 | 6.52 | 23.51(Ⅱ) | 129.30 | 0.835 | 37 |
PsMATE48 | 549 | 59 697.29 | 7.01 | 37.15(Ⅱ) | 110.87 | 0.485 | 48 |
PsMATE49 | 501 | 54 511.57 | 8.11 | 37.21(Ⅱ) | 122.67 | 0.626 | 32 |
PsMATE51 | 545 | 58 758.03 | 8.50 | 38.09(Ⅱ) | 113.32 | 0.517 | 56 |
PsMATE56 | 507 | 54 725.26 | 8.26 | 32.54(Ⅱ) | 123.49 | 0.708 | 33 |
蛋白Protein | α-螺旋α-helix | β-折叠β-sheet | 延伸链Extending strand | 无规卷曲Random coil |
---|---|---|---|---|
PsMATE14 | 320(67.51%) | 17(3.59%) | 57(12.03%) | 80(16.88%) |
PsMATE16A | 295(60.33%) | 21(4.29%) | 64(13.09%) | 109(22.29%) |
PsMATE16B | 289(57.92%) | 23(4.61%) | 67(13.43%) | 120(24.05%) |
PsMATE23 | 296(59.80%) | 18(3.64%) | 75(15.15%) | 106(21.41%) |
PsMATE27 | 298(60.57%) | 16(3.25%) | 71(14.43%) | 107(21.75%) |
PsMATE32 | 302(56.13%) | 26(4.83%) | 78(14.50%) | 132(24.54%) |
PsMATE33 | 294(61.12%) | 18(3.74%) | 76(15.80%) | 93(19.33%) |
PsMATE35A | 308(62.47%) | 19(3.85%) | 63(12.78%) | 103(20.89%) |
PsMATE35B | 274(55.92%) | 19(3.88%) | 88(17.96%) | 109(22.24%) |
PsMATE40 | 310(59.85%) | 20(3.86%) | 72(13.90%) | 116(22.39%) |
PsMATE41A | 340(64.76%) | 15(2.86%) | 66(12.57%) | 104(19.81%) |
PsMATE41B | 305(60.04%) | 16(3.15%) | 74(14.57%) | 113(22.24%) |
PsMATE41C | 306(60.83%) | 16(3.18%) | 80(15.90%) | 101(20.08%) |
PsMATE48 | 307(55.92%) | 18(3.28%) | 65(11.84%) | 159(28.96%) |
PsMATE49 | 298(59.48%) | 18(3.59%) | 59(11.78%) | 126(25.15%) |
PsMATE51 | 308(56.51%) | 22(4.04%) | 68(12.48%) | 147(26.97%) |
PsMATE56 | 310(61.14%) | 18(3.55%) | 54(10.65%) | 125(24.65%) |
表4 山杏种子PsMATE蛋白的二级结构预测
Table 4 Secondary structure analysis of PsMATE protein in the seeds of P. sibirica
蛋白Protein | α-螺旋α-helix | β-折叠β-sheet | 延伸链Extending strand | 无规卷曲Random coil |
---|---|---|---|---|
PsMATE14 | 320(67.51%) | 17(3.59%) | 57(12.03%) | 80(16.88%) |
PsMATE16A | 295(60.33%) | 21(4.29%) | 64(13.09%) | 109(22.29%) |
PsMATE16B | 289(57.92%) | 23(4.61%) | 67(13.43%) | 120(24.05%) |
PsMATE23 | 296(59.80%) | 18(3.64%) | 75(15.15%) | 106(21.41%) |
PsMATE27 | 298(60.57%) | 16(3.25%) | 71(14.43%) | 107(21.75%) |
PsMATE32 | 302(56.13%) | 26(4.83%) | 78(14.50%) | 132(24.54%) |
PsMATE33 | 294(61.12%) | 18(3.74%) | 76(15.80%) | 93(19.33%) |
PsMATE35A | 308(62.47%) | 19(3.85%) | 63(12.78%) | 103(20.89%) |
PsMATE35B | 274(55.92%) | 19(3.88%) | 88(17.96%) | 109(22.24%) |
PsMATE40 | 310(59.85%) | 20(3.86%) | 72(13.90%) | 116(22.39%) |
PsMATE41A | 340(64.76%) | 15(2.86%) | 66(12.57%) | 104(19.81%) |
PsMATE41B | 305(60.04%) | 16(3.15%) | 74(14.57%) | 113(22.24%) |
PsMATE41C | 306(60.83%) | 16(3.18%) | 80(15.90%) | 101(20.08%) |
PsMATE48 | 307(55.92%) | 18(3.28%) | 65(11.84%) | 159(28.96%) |
PsMATE49 | 298(59.48%) | 18(3.59%) | 59(11.78%) | 126(25.15%) |
PsMATE51 | 308(56.51%) | 22(4.04%) | 68(12.48%) | 147(26.97%) |
PsMATE56 | 310(61.14%) | 18(3.55%) | 54(10.65%) | 125(24.65%) |
蛋白 Protein | 跨膜区 Transmembrane domain | 质膜 Plasma membrane | 液泡 Vacuolar | 高尔基体 Golgi | 内质网 Endoplasmic reticulum | 叶绿体 Chloroplast | 细胞质 Cytoplasmic | 细胞核 Nucleus |
---|---|---|---|---|---|---|---|---|
PsMATE14 | 10 | 6 | 7 | - | - | - | - | - |
PsMATE16A | 12 | 6 | 5 | 1 | 2 | - | - | - |
PsMATE16B | 12 | 6 | 5 | 1 | 2 | - | - | - |
PsMATE23 | 12 | 7 | 3 | 3 | 1 | - | - | - |
PsMATE27 | 10 | 12 | 2 | - | - | - | - | - |
PsMATE32 | 12 | 8 | 3 | 2 | 1 | - | - | - |
PsMATE33 | 12 | 13 | 1 | - | - | - | - | - |
PsMATE35A | 12 | 9 | 4 | - | 1 | - | - | - |
PsMATE35B | 11 | 5 | 4 | - | 3 | 1 | - | - |
PsMATE40 | 12 | 7 | 4 | 2 | 1 | - | - | - |
PsMATE41A | 12 | 4 | 8 | - | 2 | - | - | - |
PsMATE41B | 12 | 10 | 1 | 2 | 1 | - | - | - |
PsMATE41C | 9 | 8 | 4 | 1 | 1 | - | - | - |
PsMATE48 | 11 | 10 | 2 | - | 2 | - | - | - |
PsMATE49 | 11 | 11 | 2 | - | 1 | - | - | - |
PsMATE51 | 10 | 6 | 3 | - | 3 | - | 1 | 1 |
PsMATE56 | 10 | 8 | 2 | 3 | 1 | - | - | - |
表5 山杏种子PsMATE蛋白跨膜区及亚细胞定位分析
Table 5 Analyses of transmembrane domains and subcellular localizations of PsMATE protein in the seeds of P. sibirica
蛋白 Protein | 跨膜区 Transmembrane domain | 质膜 Plasma membrane | 液泡 Vacuolar | 高尔基体 Golgi | 内质网 Endoplasmic reticulum | 叶绿体 Chloroplast | 细胞质 Cytoplasmic | 细胞核 Nucleus |
---|---|---|---|---|---|---|---|---|
PsMATE14 | 10 | 6 | 7 | - | - | - | - | - |
PsMATE16A | 12 | 6 | 5 | 1 | 2 | - | - | - |
PsMATE16B | 12 | 6 | 5 | 1 | 2 | - | - | - |
PsMATE23 | 12 | 7 | 3 | 3 | 1 | - | - | - |
PsMATE27 | 10 | 12 | 2 | - | - | - | - | - |
PsMATE32 | 12 | 8 | 3 | 2 | 1 | - | - | - |
PsMATE33 | 12 | 13 | 1 | - | - | - | - | - |
PsMATE35A | 12 | 9 | 4 | - | 1 | - | - | - |
PsMATE35B | 11 | 5 | 4 | - | 3 | 1 | - | - |
PsMATE40 | 12 | 7 | 4 | 2 | 1 | - | - | - |
PsMATE41A | 12 | 4 | 8 | - | 2 | - | - | - |
PsMATE41B | 12 | 10 | 1 | 2 | 1 | - | - | - |
PsMATE41C | 9 | 8 | 4 | 1 | 1 | - | - | - |
PsMATE48 | 11 | 10 | 2 | - | 2 | - | - | - |
PsMATE49 | 11 | 11 | 2 | - | 1 | - | - | - |
PsMATE51 | 10 | 6 | 3 | - | 3 | - | 1 | 1 |
PsMATE56 | 10 | 8 | 2 | 3 | 1 | - | - | - |
图7 山杏种子PsMATE40基因全长cDNA的PCR扩增 M为2 000 DNA分子标准;1为PsMATE40基因片段
Fig. 7 Amplification of full-length cDNA sequence of PsMATE40 gene in the seeds of P. sibirica M is 2 000 DNA marker;and 1 is PsMATE40 gene fragment
图8 山杏不同组织中PsMATE40基因的相对表达量 以根中PsMATE40基因的最低表达量为对照,标准化校正为1
Fig. 8 Relative expressions of PsMATE40 gene in different parts of P. sibirica The lowest expression of PsMATE40 gene in the roots was taken as control,and standardized calibration is 1
图9 山杏种子PsMATE40蛋白的亚细胞定位 A为对照明场照片;B为对照荧光照片;C为对照合并照片;D为GFP-PsMATE40明场照片;E为GFP-PsMATE40荧光照片;F为GFP-PsMATE40合并照片
Fig. 9 Subcellular localization of PsMATE40 protein in the seeds of P. sibirica A is bright field image of the control. B is fluorescence image of the control. C is merged image of the control. D is bright field image of GFP-PsMATE40. E is fluorescence image of GFP-PsMATE40. F is merged image of GFP-PsMATE40
[1] | 董胜君. 山杏种质资源遗传多样性及优特种质发掘研究[D]. 沈阳:沈阳农业大学, 2020. |
Dong SJ. Genetic diversity of wild apricot germplasm resources and exploration of superior germplasm[D]. Shenyang:Shenyang Agricultural University, 2020. | |
[2] | 焦中高, 吕真真, 刘杰超, 等. 苦杏仁去皮热风干燥适宜温度提高油脂品质[J]. 农业工程学报, 2016, 32(4): 262-268. |
Jiao ZG, Lü ZZ, Liu JC, et al. Suitable hot air drying temperature improving quality of apricot kernel oil[J]. Trans Chin Soc Agric Eng, 2016, 32(4): 262-268. | |
[3] |
Darbani B, Motawia MS, Olsen CE, et al. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter[J]. Sci Rep, 2016, 6: 37079.
doi: 10.1038/srep37079 URL |
[4] |
Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters[J]. Mol Microbiol, 1999, 31(1): 394-395.
pmid: 9987140 |
[5] |
Wang LH, Bei XJ, Gao JS, et al. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana[J]. BMC Plant Biol, 2016, 16(1): 207.
doi: 10.1186/s12870-016-0895-0 URL |
[6] |
Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli[J]. Antimicrob Agents Chemother, 1998, 42(7): 1778-1782.
pmid: 9661020 |
[7] |
Diener AC, Gaxiola RA, Fink GR. Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins[J]. Plant Cell, 2001, 13(7): 1625-1638.
pmid: 11449055 |
[8] |
Li L, He Z, Pandey GK, et al. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J]. J Biol Chem, 2002, 277(7): 5360-5368.
doi: 10.1074/jbc.M108777200 URL |
[9] |
Li NN, Meng HJ, Xing HT, et al. Genome-wide analysis of MATE transporters and molecular characterization of aluminum resistance in Populus[J]. J Exp Bot, 2017, 68(20): 5669-5683.
doi: 10.1093/jxb/erx370 URL |
[10] |
Li Y, He H, He LF. Genome-wide analysis of the MATE gene family in potato[J]. Mol Biol Rep, 2019, 46(1): 403-414.
doi: 10.1007/s11033-018-4487-y URL |
[11] |
Dong BY, Niu LL, Meng D, et al. Genome-wide analysis of MATE transporters and response to metal stress in Cajanus cajan[J]. J Plant Interact, 2019, 14(1): 265-275.
doi: 10.1080/17429145.2019.1620884 URL |
[12] |
Upadhyay N, Kar D, Deepak Mahajan B, et al. The multitasking abilities of MATE transporters in plants[J]. J Exp Bot, 2019, 70(18): 4643-4656.
doi: 10.1093/jxb/erz246 pmid: 31106838 |
[13] |
Wang J, Lin W, Yin Z, et al. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel[J]. Biotechnol Biofuels, 2019, 12: 6.
doi: 10.1186/s13068-018-1347-x pmid: 30622648 |
[14] |
Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. J Mol Biol, 1999, 294(5): 1351-1362.
pmid: 10600390 |
[15] |
Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nat Protoc, 2015, 10(6): 845-858.
doi: 10.1038/nprot.2015.053 URL |
[16] | Nielsen H. Predicting secretory proteins with SignalP[J]. Methods Mol Biol Clifton N J, 2017, 1611: 59-73. |
[17] |
Nakai K, Kanehisa M. Expert system for predicting protein localization sites in gram-negative bacteria[J]. Proteins, 1991, 11(2): 95-110.
pmid: 1946347 |
[18] |
Niu J, Zhu B, Cai J, et al. Selection of reference genes for gene expression studies in Siberian Apricot(Prunus sibirica L.)Germplasm using quantitative real-time PCR[J]. PLoS One, 2014, 9(8): e103900.
doi: 10.1371/journal.pone.0103900 URL |
[19] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4): 402-408.
pmid: 11846609 |
[20] |
Niu J, An JY, Wang LB, et al. Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot(Prunus sibirica L.)seed kernels for the development of woody biodiesel[J]. Biotechnol Biofuels, 2015, 8: 29.
doi: 10.1186/s13068-015-0213-3 URL |
[21] | 刘力力, 林子欣, 胡锦赫, 等. 山杏CAT家族基因的生物信息学预测及表达分析[J]. 分子植物育种, 2018, 16(22): 7255-7263. |
Liu LL, Lin ZX, Hu JH, et al. Bioinformatic prediction and expression analysis of CAT gene family from Prunus sibirica L[J]. Mol Plant Breed, 2018, 16(22): 7255-7263. | |
[22] |
Santos ALD, Chaves-Silva S, Yang L, et al. Global analysis of the MATE gene family of metabolite transporters in tomato[J]. BMC Plant Biol, 2017, 17(1): 185.
doi: 10.1186/s12870-017-1115-2 URL |
[23] |
Min X, Jin X, Liu W, et al. Transcriptome-wide characterization and functional analysis of MATE transporters in response to aluminum toxicity in Medicago sativa L[J]. PeerJ, 2019, 7: e6302.
doi: 10.7717/peerj.6302 URL |
[24] | 王作敏. 棕色棉纤维MATE基因的克隆及功能初步研究[D]. 石河子:石河子大学, 2018. |
Wang ZM. Cloning and functional preliminary analysis of fiber MATE gene in brown cotton[D]. Shihezi:Shihezi University, 2018. | |
[25] |
Kusakizako T, Miyauchi H, Ishitani R, et al. Structural biology of the multidrug and toxic compound extrusion superfamily transporters[J]. Biochim Biophys Acta Biomembr, 2020, 1862(12): 183154.
doi: 10.1016/j.bbamem.2019.183154 URL |
[26] |
Chung YJ, Krueger C, Metzgar D, et al. Size comparisons among integral membrane transport protein homologues in bacteria, Archaea, and Eucarya[J]. J Bacteriol, 2001, 183(3): 1012-1021.
pmid: 11208800 |
[27] |
Miyauchi H, Moriyama S, Kusakizako T, et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter[J]. Nat Commun, 2017, 8(1): 1633.
doi: 10.1038/s41467-017-01541-0 URL |
[28] |
Zhang HW, Zhao FG, Tang RJ, et al. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis[J]. PNAS, 2017, 114(10): E2036-E2045.
doi: 10.1073/pnas.1616203114 URL |
[29] |
Thompson EP, Wilkins C, Demidchik V, et al. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development[J]. J Exp Bot, 2010, 61(2): 439-451.
doi: 10.1093/jxb/erp312 pmid: 19995827 |
[30] |
Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, et al. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium[J]. Plant Cell, 2001, 13(4): 853-871.
pmid: 11283341 |
[31] |
Marinova K, Pourcel L, Weder B, et al. The Arabidopsis MATE transporter TT12 Acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. Plant Cell, 2007, 19(6): 2023-2038.
doi: 10.1105/tpc.106.046029 URL |
[32] |
Seo PJ, Park J, Park MJ, et al. A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis[J]. Biochem J, 2012, 442(3): 551-561.
doi: 10.1042/BJ20111311 URL |
[33] |
Burko Y, Geva Y, Refael-Cohen A, et al. From organelle to organ:ZRIZI MATE-Type transporter is an organelle transporter that enhances organ initiation[J]. Plant Cell Physiol, 2011, 52(3): 518-527.
doi: 10.1093/pcp/pcr007 URL |
[34] |
Wang R, Liu X, Liang S, et al. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis[J]. J Exp Bot, 2015, 66(20): 6327-6343.
doi: 10.1093/jxb/erv344 pmid: 26160579 |
[35] |
Li R, Li J, Li S, et al. ADP1 affects plant architecture by regulating local auxin biosynjournal[J]. PLoS Genet, 2014, 10(1): e1003954.
doi: 10.1371/journal.pgen.1003954 URL |
[36] |
Tian W, Hou C, Ren Z, et al. A molecular pathway for CO2 response in Arabidopsis guard cells[J]. Nat Commun, 2015, 6: 6057.
doi: 10.1038/ncomms7057 URL |
[37] |
Rogers EE, Guerinot ML. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. Plant Cell, 2002, 14(8): 1787-1799.
doi: 10.1105/tpc.001495 URL |
[38] | Kovinich N, Wang YQ, Adegboye J, et al. Arabidopsis MATE 45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses[J]. Plant Direct, 2018, 2(10): e00087. |
[39] |
Yamasaki K, Motomura Y, Yagi Y, et al. Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynjournal in Arabidopsis thaliana[J]. Plant Signal Behav, 2013, 8(4): e23603.
doi: 10.4161/psb.23603 URL |
[40] |
Serrano M, Wang B, Aryal B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiol, 2013, 162(4): 1815-1821.
doi: 10.1104/pp.113.218156 pmid: 23757404 |
[41] |
Rekhter D, Lüdke D, Ding Y, et al. Isochorismate-derived biosynjournal of the plant stress hormone salicylic acid[J]. Science, 2019, 365(6452): 498-502.
doi: 10.1126/science.aaw1720 URL |
[42] | Ishihara T, Sekine KT, Hase S, et al. Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses[J]. Plant Biol:Stuttg, 2008, 10(4): 451-461. |
[43] |
Liu J, Li Y, Wang W, et al. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean[J]. BMC Genomics, 2016, 17: 223.
doi: 10.1186/s12864-016-2559-8 URL |
[44] | Ali E, Saand MA, Khan AR, et al. Genome-wide identification and expression analysis of detoxification efflux carriers(DTX)genes family under abiotic stresses in flax[J]. Physiol Plant, 2021, 171(4): 483-501. |
[45] |
Santamour FS Jr. Amygdalin in Prunus leaves[J]. Phytochemistry, 1998, 47(8): 1537-1538.
doi: 10.1016/S0031-9422(97)00787-5 URL |
[46] |
London-Shafir I, Shafir S, Eisikowitch D. Amygdalin in almond nectar and pollen - facts and possible roles[J]. Plant Syst Evol, 2003, 238(1/2/3/4): 87-95.
doi: 10.1007/s00606-003-0272-y URL |
[47] |
Tiwari M, Sharma D, Singh M, et al. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis[J]. Sci Rep, 2014, 4: 3964.
doi: 10.1038/srep03964 URL |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[9] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[10] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[11] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[12] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[13] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||