生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 149-156.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0847
王子琰1(), 王建1, 张伦1, 桂水清2, 卢雪梅1()
收稿日期:
2021-07-08
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
王子琰,女,硕士研究生,研究方向:药用生物活性物质筛选、结构功能及应用;E-mail: 基金资助:
WANG Zi-yan1(), WANG Jian1, ZHANG Lun1, GUI Shui-qing2, LU Xue-mei1()
Received:
2021-07-08
Published:
2022-03-26
Online:
2022-04-06
摘要:
以鼠伤寒沙门氏菌(Salmonella typhimurium)作为研究对象,探讨家蝇抗菌肽(Musca domestica cecropin,MDC)在不同条件下的抑菌稳定性。采用牛津杯法研究pH值、温度、光照、蛋白酶、金属离子、表面活性剂及有机试剂对MDC抑菌活性(抑菌圈大小)的影响。在酸性条件下MDC的抑菌活性稍有下降,保持在85%左右,但在碱性条件下的抑菌活性无明显改变,稳定性较好。经低温和高温处理后,抑菌活性无显著差异。MDC在黑暗、正常光及紫外线照射处理30 min,其抑菌活性仍保持稳定。MDC对胰蛋白酶敏感,抑菌活性完全消失,而对胃蛋白酶具有良好的稳定性。MDC对Ca2+、K+有良好的稳定性,但对Mg2+敏感,在Fe3+作用下其抑菌活性较对照组有所升高(P<0.05)。表面活性剂和有机试剂处理MDC后,其抑菌活性均明显降低。家蝇抗菌肽MDC能显著抑制鼠伤寒沙门氏菌生长繁殖,其活性几乎不受pH值,温度和光照变化、胃蛋白酶和某些金属离子的影响,且Fe3+能够协同增强MDC的抑菌活性,但Mg2+、表面活性剂、有机试剂以及胰蛋白酶水解作用可分别使其抑菌活性部分或完全丧失。
王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156.
WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium[J]. Biotechnology Bulletin, 2022, 38(3): 149-156.
图3 MDC经不同pH处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3、4依次为生理盐水、处理后的MDC、头孢曲松钠、未处理的MDC;统计图中其他各组均与Control组(未处理的MDC)相比,*P<0.05,**P<0.01,n=3
Fig. 3 Antibacterial activity of MDC on S. typhimurium after different pH treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,treated MDC,ceftriaxone sodium and untreated MDC respectively. Compared with the control group(untreated MDC),*P < 0.05,**P < 0.01,n=3
图4 MDC经不同温度处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3依次为生理盐水、不同温度处理后的MDC和头孢曲松钠,n=3
Fig. 4 Antibacterial activity of MDC on S. typhimurium after different temperature treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2 and 3 are normal saline,MDC treated with different temperature and ceftriaxone sodium respectively,n=3
图5 MDC经不同光照条件处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3依次为生理盐水、不同光照处理后的MDC和头孢曲松钠,n=3
Fig. 5 Antibacterial activity of MDC on S. typhimurium under different light condition All the samples in the bacteriostatic plate are numbered clockwise. 1,2 and 3 are normal saline,MDC treated with different light conditions and ceftriaxone sodium respectively,n = 3
图6 MDC经不同蛋白酶处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3、4依次为生理盐水、蛋白酶处理后的MDC、头孢曲松钠、95℃处理的MDC;统计图中其他各组均与Control组(95℃处理的MDC)相比,****P<0.0001,n=3
Fig. 6 Antibacterial activity of MDC on S. typhimurium after different proteases treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,MDC treated with protease,ceftriaxone sodium and MDC treated at 95℃ respectively. Compared with the control group(MDC treated at 95℃),****P < 0.0001,n = 3
图7 MDC经不同金属离子处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3、4依次为生理盐水、未处理的MDC、头孢曲松钠、金属离子处理的MDC;统计图中其他各组均与Control组(未处理的MDC)相比,***P<0.001,n=3
Fig. 7 Antibacterial activity of MDC on S. typhimurium after different metal ion treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with metal ion respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
图8 MDC经不同表面活性剂处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3、4依次为生理盐水、未处理的MDC、头孢曲松钠、表面活性剂处理的MDC;统计图中其他各组均与Control组(未处理的MDC)相比,***P<0.001,n=3
Fig. 8 Antibacterial activity of MDC on S. typhimurium after different surfactant treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with surfactant respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
图9 MDC经不同有机试剂处理后对鼠伤寒沙门氏菌的抑菌活性 抑菌平板图中样品均以顺时针方向编号,1、2、3、4依次为生理盐水、未处理的MDC、头孢曲松钠、有机试剂处理的MDC;统计图中其他各组均与Control组(未处理的MDC)相比,***P<0.001,n=3
Fig. 9 Antibacterial activity of MDC on S. typhimurium after different organic solvent treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with organic solvent respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
[1] | 祁丽, 姜宁, 张爱忠, 等. 抗菌肽研发现状及其改造策略[J]. 中国畜牧兽医, 2016, 43(2):450-456. |
Qi L, Jiang N, Zhang AZ, et al. Research present status and reform strategy of antimicrobial peptides[J]. China Animal Husb Vet Med, 2016, 43(2):450-456. | |
[2] | 汪吴晶, 高金燕, 佟平, 等. 抗菌肽的作用机制、应用及改良策略[J]. 动物营养学报, 2017, 29(11):3885-3892. |
Wang WJ, Gao JY, Tong P, et al. Antimicrobial peptides:action mechanism, application and improvement strategy[J]. Chin J Animal Nutr, 2017, 29(11):3885-3892. | |
[3] | 单安山, 田昊天, 邵长轩, 等. 抗菌肽抗细菌机理研究进展[J]. 东北农业大学学报, 2018, 49(3):84-94. |
Shan AS, Tian HT, Shao CX, et al. Research advance on antibacterial mechanism of antimicrobial peptides[J]. J Northeast Agric Univ, 2018, 49(3):84-94. | |
[4] |
Lai Y, Gallo RL. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense[J]. Trends Immunol, 2009, 30(3):131-141.
doi: 10.1016/j.it.2008.12.003 URL |
[5] |
Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity. purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. Eur J Biochem, 2005, 106(1):7-16.
doi: 10.1111/ejb.1980.106.issue-1 URL |
[6] |
da Costa JP, Cova M, Ferreira R, et al. Antimicrobial peptides:an alternative for innovative medicines?[J]. Appl Microbiol Biotechnol, 2015, 99(5):2023-2040.
doi: 10.1007/s00253-015-6375-x URL |
[7] |
Zhang J, Movahedi A, Xu J, et al. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A[J]. J Biotechnol, 2015, 199:47-54.
doi: 10.1016/j.jbiotec.2015.02.018 URL |
[8] |
Hemshekhar M, Anaparti V, Mookherjee N. Functions of cationic host defense peptides in immunity[J]. Pharmaceuticals, 2016, 9(3):40.
doi: 10.3390/ph9030040 URL |
[9] |
Abedinzadeh M, Gaeini M, Sardari S. Natural antimicrobial peptides against Mycobacterium tuberculosis[J]. J Antimicrob Chemother, 2015, 70(5):1285-1289.
doi: 10.1093/jac/dku570 pmid: 25681127 |
[10] |
Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246-248. 1981[J]. J Immunol, 2009, 182(11):6635-6637.
pmid: 19454655 |
[11] |
Luz C, Saladino F, Luciano FB, et al. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum[J]. LWT Food Sci Technol, 2017, 81:128-135.
doi: 10.1016/j.lwt.2017.03.053 URL |
[12] |
Kim JK, Lee E, Shin S, et al. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus[J]. J Biol Chem, 2011, 286(48):41296-41311.
doi: 10.1074/jbc.M111.269225 URL |
[13] |
Al-Rayahi IA, Sanyi RH. The overlapping roles of antimicrobial peptides and complement in recruitment and activation of tumor-associated inflammatory cells[J]. Front Immunol, 2015, 6:2.
doi: 10.3389/fimmu.2015.00002 pmid: 25657649 |
[14] |
Chiu CH, Su LH, Chu C. Salmonella enterica serotype Choleraesuis:epidemiology, pathogenesis, clinical disease, and treatment[J]. Clin Microbiol Rev, 2004, 17(2):311-322.
doi: 10.1128/CMR.17.2.311-322.2004 URL |
[15] |
Kozak GK, MacDonald D, Landry L, et al. Foodborne outbreaks in Canada linked to produce:2001 through 2009[J]. J Food Prot, 2013, 76(1):173-183.
doi: 10.4315/0362-028X.JFP-12-126 URL |
[16] |
Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella[J]. Trends Plant Sci, 2012, 17(5):245-249.
doi: 10.1016/j.tplants.2012.03.007 pmid: 22513107 |
[17] |
Swearingen MC, Porwollik S, Desai PT, et al. Virulence of 32 Salmonella strains in mice[J]. PLoS One, 2012, 7(4):e36043.
doi: 10.1371/journal.pone.0036043 URL |
[18] |
Lu X, Shen J, Jin X, et al. Bactericidal activity of Musca domestica cecropin(Mdc)on multidrug-resistant clinical isolate of Escherichia coli[J]. Appl Microbiol Biotechnol, 2012, 95(4):939-945.
doi: 10.1007/s00253-011-3793-2 pmid: 22202966 |
[19] |
Zhang L, Gui SQ, Liang ZB, et al. Musca domestica cecropin(mdc)alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment:associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora[J]. Front Microbiol, 2019, 10:522.
doi: 10.3389/fmicb.2019.00522 pmid: 30930887 |
[20] | 曾佳利, 桂水清, 卢雪梅. Musca domestica cecropin协同头孢曲松钠抗鼠伤寒沙门氏菌及生物被膜作用研究[J]. 中国人兽共患病学报, 2021, 37(2):101-108. |
Zeng JL, Gui SQ, Lu XM. Musca domestica cecropin synergizes with ceftriaxone sodium anti-Salmonella typhimurium and has an anti-biofilm effect[J]. Chin J Zoonoses, 2021, 37(2):101-108. | |
[21] | 张坚磊, 帅真. 细菌耐药性的新问题[J]. 国外医学临床生物化学与检验学分册, 2001, 22(1):36-37. |
Zhang JL, Shuai Z. The new problem of bacterial resistance[J]. Foreign Med Sci, 2001, 22(1):36-37. | |
[22] |
Petrovska L, Mather AE, AbuOun M, et al. Microevolution of monophasic Salmonella typhimurium during epidemic, united kingdom, 2005-2010[J]. Emerg Infect Dis, 2016, 22(4):617-624.
doi: 10.3201/eid2204.150531 pmid: 26982594 |
[23] | 李云香, 姚倩, 任玫, 等. 抗菌肽作用机制研究进展[J]. 动物医学进展, 2019, 40(9):98-103. |
Li YX, Yao Q, Ren M, et al. Progress on action mechanisms of antimicrobial peptides[J]. Prog Vet Med, 2019, 40(9):98-103. | |
[24] |
Tang WT, Yuan HN, Zhang H, et al. An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method[J]. Food Control, 2015, 50:413-422.
doi: 10.1016/j.foodcont.2014.09.030 URL |
[25] | 任娇. 山羊乳酪蛋白抗菌肽稳定性研究及其功能评价[D]. 杨凌:西北农林科技大学, 2014. |
Ren J. Study on stability and function evaluation of antibacterial peptides derived from goat casein[D]. Yangling:Northwest A & F University, 2014. | |
[26] | 周世成. 小麦蛋白抗菌肽的制备及其特性研究[D]. 郑州:河南工业大学, 2011. |
Zhou SC. The studies on preparation and properties of antimicrobial peptides from wheat gluten[D]. Zhengzhou:Henan University of Technology, 2011. | |
[27] | 董柱, 钟亨任, 罗文杰, 等. 海南产沼蛙皮肤temporin家族抗菌肽抗菌活性及稳定性研究[J]. 海南大学学报:自然科学版, 2016, 34(3):250-256. |
Dong Z, Zhong HR, Luo WJ, et al. Antimicrobial activities and influential factors of temporin family antimicrobial peptides derived from Hylarana guentheri of Hainan[J]. Nat Sci J Hainan Univ, 2016, 34(3):250-256. | |
[28] | 李军, 李平兰, 王顺, 等. 萝卜籽蛋白提取物对鲟鱼腐败菌抑制作用及其理化性质的研究[J]. 食品科学, 2018, 39(13):41-46. |
Li J, Li PL, Wang S, et al. Inhibition of sturgeon spoilage bacteria by protein extract from radish seed and its physicochemical characteristics[J]. Food Sci, 2018, 39(13):41-46. | |
[29] | 谷翰杰. 深海热液一株枯草芽孢杆菌和一种抗脂多糖因子的鉴定与分析[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2019. |
Gu HJ. Identification and characterization of a Bacillus subtilis isolate and an anti-lipopolysaccharide factor from deep-seahydrothermal vent[D]. Qingdao:University of the Chinese Academy of Sciences(Institute of Oceanology, Chinese Academy of Sciences), 2019. |
[1] | 严涛, 陈珂可, 杨恒飞, 朱建国, 夏九学, 方曙光. 益生菌菌粉贮存活性影响因素研究[J]. 生物技术通报, 2023, 39(4): 296-303. |
[2] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[3] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[4] | 梁星星, 王佳, 许文涛. 抗病毒核苷酸类似物磷酸化修饰研究进展[J]. 生物技术通报, 2022, 38(2): 218-226. |
[5] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[6] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[7] | 江迪, 徐春城. 发酵TMR应用及其微生物种群演替规律研究进展[J]. 生物技术通报, 2021, 37(9): 31-38. |
[8] | 王小河, 辜夕容, 祁顺菊, 李杰, 崔瑶, 李得霞, 杨莉荟. 巴山榧树枝和叶提取物的抗氧化能力、抑菌活性与挥发性成分[J]. 生物技术通报, 2021, 37(8): 152-161. |
[9] | 蔡国磊, 陆小凯, 娄水珠, 杨海英, 杜刚. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185. |
[10] | 高振峰, 赵佳. 微白黄链霉菌G-1发酵液抗真菌特性研究和发酵条件优化[J]. 生物技术通报, 2021, 37(3): 53-64. |
[11] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[12] | 郑叶子, 王丹, 潘咪, 王艳玲, 安丽君. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2): 15-23. |
[13] | 余琴, 马现永, 邓盾, 王永飞. 海氏肠球菌IDO5对猪粪废水中吲哚降解条件优化及降解途径分析[J]. 生物技术通报, 2021, 37(12): 113-123. |
[14] | 杨悦, 陶妍, 谢晶, 钱韻芳. 基于重组毕赤酵母的草鱼C型溶菌酶生物合成及其抑菌活性[J]. 生物技术通报, 2021, 37(12): 169-179. |
[15] | 潘镜宇, 陈佳乐, 钱玙呈, 刘鑫, 杨昊宁, 刘立, 魏步云, 赵洪新. 深海出芽短梗霉(Aureobasidium sp. 3A00493)菌株特征与胞外多糖特性分析[J]. 生物技术通报, 2021, 37(12): 71-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||