生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 221-234.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0912
徐扬(), 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香()
收稿日期:
2021-07-15
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
徐扬,女,博士,助理研究员,研究方向:花生逆境栽培与土壤改良;E-mail: 基金资助:
XU Yang(), ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang()
Received:
2021-07-15
Published:
2022-06-26
Online:
2022-07-11
摘要:
为了解不同土壤类型花生根际土壤细菌菌群多样性差异与产量的关系,明确不同土壤类型花生生产特性的区域优势,以6个花生主产区代表性土壤为研究对象,采用盆栽实验利用高通量测序技术研究不同土类花生根际土与非根际土细菌群落结构和变化特征。对6个土壤样品细菌菌群丰富度和多样性分析显示,湖南邵阳红壤细菌丰富度和多样性均较低,河北滦县褐土细菌丰富度和多样性均较高。放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)及芽单胞菌门(Gemmatimonadetes)等为共有优势菌门,但在不同土壤类型样本中的菌群丰度存在明显差异,其中湖南邵阳红壤中绿弯菌门优势最明显,其他土壤类型放线菌门和变形菌门优势较明显。根际土与非根际土细菌门丰度间有差异,湖南邵阳红壤根际土与非根际土各细菌门(包括放线菌门、变形菌门、绿弯菌门、酸杆菌门、芽单胞菌门以及厚壁菌门)丰度变化程度较其它地区大。冗余分析表明,土壤酸碱度(pH)、有机质(ORM)、碱解氮(N),速效磷(P)和速效钾(K)等土壤理化因子对细菌菌群组成和物种丰度均有影响,但影响程度和正负相关性因土壤类型而异,河南焦作潮褐土细菌菌群与所有土壤理化因子均为锐角,呈显著正相关;而湖南邵阳红壤细菌菌群与所有因子间均为钝角,呈显著负相关。统计学分析显示,吉林公主岭黑土、新疆石河子棕钙土和山东沂南褐土荚果产量较高,湖南邵阳红壤荚果产量较低。优势菌门变形菌门在吉林公主岭黑土、新疆石河子棕钙土和山东沂南褐土中相对丰度高于湖南邵阳红壤,属水平鞘氨醇单胞菌属(Sphingomonas)相对丰度在山东沂南褐土和吉林公主岭黑土也较高,推测变形菌门和鞘氨醇单胞菌属在花生生长发育和荚果产量提高方面是有利的。不同土壤类型花生根际细菌组成虽有一定的相似性,但差异性明显,个别菌群丰度呈现出特有性,其中变形菌门和鞘氨醇单胞菌属可能分别是与花生荚果产量提高相关的有益菌门和菌属。湖南邵阳红壤花生荚果产量最低,其花生生产的土壤禀赋优势较低。
徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234.
XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield[J]. Biotechnology Bulletin, 2022, 38(6): 221-234.
土壤类型 Soil type | 纬度 Latitude | 经度 Longitude | 年平均气温 Annual average temperature/℃ | 年平均降水量 Annual mean precipitation/ mm |
---|---|---|---|---|
河南焦作潮褐土 | 34°32'04″-34°45'07″ | 112°16'36″-112°37'20″ | 12.8-14.8 | 528-800 |
山东沂南褐土 | 35°18'26″-35°46'15″ | 118°6'36″-118°43'31″ | 12.8-14.0 | 900 |
河北滦县褐土 | 39°34'52″-39°58'27″ | 118°14'06″-118°49'34″ | 12.5 | 697.2 |
吉林公主岭黑土 | 43°11'08″-44°09'32″ | 124°02'09″-125°18'22″ | 5.6 | 594.8 |
新疆石河子棕钙土 | 43°26'26″-45°20'17″ | 84°58'32″-86°24'04″ | 7.5-8.2 | 180-270 |
湖南邵阳红壤 | 26°40'11″-27°6'23″ | 110°59'02″-110°40'12″ | 16.1-17.1 | 1 300 |
表1 不同土壤经纬度、年平均气温和年平均降水量
Table 1 Different soils latitude and longitude,annual average temperature,and annual mean precipitation
土壤类型 Soil type | 纬度 Latitude | 经度 Longitude | 年平均气温 Annual average temperature/℃ | 年平均降水量 Annual mean precipitation/ mm |
---|---|---|---|---|
河南焦作潮褐土 | 34°32'04″-34°45'07″ | 112°16'36″-112°37'20″ | 12.8-14.8 | 528-800 |
山东沂南褐土 | 35°18'26″-35°46'15″ | 118°6'36″-118°43'31″ | 12.8-14.0 | 900 |
河北滦县褐土 | 39°34'52″-39°58'27″ | 118°14'06″-118°49'34″ | 12.5 | 697.2 |
吉林公主岭黑土 | 43°11'08″-44°09'32″ | 124°02'09″-125°18'22″ | 5.6 | 594.8 |
新疆石河子棕钙土 | 43°26'26″-45°20'17″ | 84°58'32″-86°24'04″ | 7.5-8.2 | 180-270 |
湖南邵阳红壤 | 26°40'11″-27°6'23″ | 110°59'02″-110°40'12″ | 16.1-17.1 | 1 300 |
土壤类型 Soil type | 土壤有机质 Soil organic matter(ORM)/(g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen(N)/(mg·kg-1) | 速效磷 Available phosphorous(P)/(mg·kg-1) | 速效钾 Available potassium (K)/(mg·kg-1) | pH |
---|---|---|---|---|---|
河南焦作潮褐土 | 14.46 | 92.00 | 17.90 | 102.20 | 7.2 |
山东沂南褐土 | 13.10 | 92.37 | 27.75 | 95.98 | 6.3 |
河北滦县褐土 | 14.62 | 71.00 | 19.32 | 104.00 | 7.15 |
吉林公主岭黑土 | 26.30 | 133.00 | 15.10 | 116.20 | 6.9 |
新疆石河子棕钙土 | 18.10 | 51.23 | 18.32 | 126.30 | 8.12 |
湖南邵阳红壤 | 12.47 | 67.85 | 6.31 | 72.3 | 4.8 |
表2 不同土壤类型营养成分和理化因子分析
Table 2 Analysis of nutrient components and physicochemical factors in different soil types
土壤类型 Soil type | 土壤有机质 Soil organic matter(ORM)/(g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen(N)/(mg·kg-1) | 速效磷 Available phosphorous(P)/(mg·kg-1) | 速效钾 Available potassium (K)/(mg·kg-1) | pH |
---|---|---|---|---|---|
河南焦作潮褐土 | 14.46 | 92.00 | 17.90 | 102.20 | 7.2 |
山东沂南褐土 | 13.10 | 92.37 | 27.75 | 95.98 | 6.3 |
河北滦县褐土 | 14.62 | 71.00 | 19.32 | 104.00 | 7.15 |
吉林公主岭黑土 | 26.30 | 133.00 | 15.10 | 116.20 | 6.9 |
新疆石河子棕钙土 | 18.10 | 51.23 | 18.32 | 126.30 | 8.12 |
湖南邵阳红壤 | 12.47 | 67.85 | 6.31 | 72.3 | 4.8 |
土壤类型 Soil type | 百果重 Weight of 100 pods/g | 百仁重 Weight of 100 seeds/g | 果产量 Pod yield/g |
---|---|---|---|
河南焦作潮褐土 | 201.31±1.44d | 69.22±0.89e | 285.75±3.33e |
山东沂南褐土 | 216.90±2.69b | 76.09±0.81c | 354.44±3.53c |
河北滦县褐土 | 207.93±2.10c | 74.76±0.39d | 310.66±1.74d |
吉林公主岭黑土 | 233.68±3.44a | 82.48±0.63a | 383.80±1.50a |
新疆石河子棕钙土 | 231.96±0.49a | 81.13±0.81b | 370.75±1.52b |
湖南邵阳红壤 | 192.05±0.53e | 67.31±0.13f | 275.52±3.86f |
表3 不同土壤类型对花生荚果产量的影响
Table 3 Effects of soil types on pod yield of peanut
土壤类型 Soil type | 百果重 Weight of 100 pods/g | 百仁重 Weight of 100 seeds/g | 果产量 Pod yield/g |
---|---|---|---|
河南焦作潮褐土 | 201.31±1.44d | 69.22±0.89e | 285.75±3.33e |
山东沂南褐土 | 216.90±2.69b | 76.09±0.81c | 354.44±3.53c |
河北滦县褐土 | 207.93±2.10c | 74.76±0.39d | 310.66±1.74d |
吉林公主岭黑土 | 233.68±3.44a | 82.48±0.63a | 383.80±1.50a |
新疆石河子棕钙土 | 231.96±0.49a | 81.13±0.81b | 370.75±1.52b |
湖南邵阳红壤 | 192.05±0.53e | 67.31±0.13f | 275.52±3.86f |
图1 α多样性分析 A:稀释性曲线;B:等级丰度曲线;C:Chao指数分析;D:Shannon指数分析
Fig.1 α diversity analysis A:Rarefaction curve analysis. B:Rank abundance curve. C:Chao index analysis. D:Shannon index analysis
图2 门水平各样本细菌群落结构 A:门水平上花生根际细菌群落丰度比例;B:采用克氏秩和检验(Kruskal-wallis H test)进行多组样本门水平细菌群落差异分析。*表示差异显著,其中* P<0.05,** P<0.01,*** P<0.001。下同
Fig.2 Bacterial community structure of each sample at the phylum level A:Percentage of bacterial community abundance at the phylum level. B:Kruskal-wallis H test was used to analyze bacterial community differences at the phylum level. * indicate significant differences,* P<0.05,** P<0.01,and*** P<0.001. The same below
图3 纲、目、科水平各样本菌群结构 A:纲水平上花生根际细菌群落丰度比例;B:目水平上花生根际细菌群落丰度比例;C:科水平上花生根际细菌群落丰度比例
Fig.3 Structure of bacterial community at the class,order and family level A:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the class level. B:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the order level. C:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the family level
图4 属水平各样本细菌群落结构 A:属水平上花生根际细菌群落丰度比例;B:采用克氏秩和检验(Kruskal-wallis H test)进行多组样本属水平细菌群落差异分析
Fig.4 Bacterial community structure of each sample at the genus level A:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the genus level;B:Kruskal-wallis H test was used to analyze bacterial community differences among multiple samples at the genus level
图5 花生根际细菌群落β多样性分析 A:主坐标分析;B:样本层次聚类分析,1-3:3次重复;C:相似性分析
Fig.5 β diversity analysis of bacterial communities on the rhizosphere of A. hypogaea A:Principal co-ordinates analysis(PCoA). B:Sample hierarchical clustering, 1-3:3 repeats. C:ANOSIM analysis
图6 各土壤样品细菌群落与土壤理化因子的相关性分析 A:Spearman相关性热图;B:各土壤样品细菌群落结构与土壤理化因子的RDA分析
Fig.6 Correlation analysis between soil bacterial commu-nity and soil physical and chemical factors A:Spearman correlation heatmap. B:RDA analysis of soil bacterial community structure and soil physical and chemical factors
[1] |
Enserink M. Nutrition science. The peanut butter debate[J]. Science, 2008, 322(5898):36-38.
doi: 10.1126/science.322.5898.36 URL |
[2] |
Toomer OT. Nutritional chemistry of the peanut(Arachis hypogaea)[J]. Crit Rev Food Sci Nutr, 2018, 58(17):3042-3053.
doi: 10.1080/10408398.2017.1339015 URL |
[3] |
Krishna G, Singh BK, Kim EK, et al. Progress in genetic engineering of peanut(Arachis hypogaea L.)——a review[J]. Plant Biotechnol J, 2015, 13(2):147-162.
doi: 10.1111/pbi.12339 pmid: 25626474 |
[4] | 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2):161-166. |
Liao BS. A review on progress and prospects of peanut industry in China[J]. Chin J Oil Crop Sci, 2020, 42(2):161-166. | |
[5] | 马军, 徐田, 叶迎, 等. 土壤类型与施氮水平耦合对水稻产量及氮素利用率的影响[J]. 生态学杂志, 2021, 40(6):1677-1686. |
Ma J, Xu T, Ye Y, et al. Effects of coupling of soil type and nitrogen application level on rice yield and nitrogen use efficiency[J]. Chin J Ecol, 2021, 40(6):1677-1686. | |
[6] |
贾立华, 赵长星, 王月福, 等. 不同质地土壤对花生根系生长、分布和产量的影响[J]. 植物生态学报, 2013, 37(7):684-690.
doi: 10.3724/SP.J.1258.2013.00071 |
Jia LH, Zhao CX, Wang YF, et al. Effects of different soil textures on the growth and distribution of root system and yield in peanut[J]. Chin J Plant Ecol, 2013, 37(7):684-690.
doi: 10.3724/SP.J.1258.2013.00071 URL |
|
[7] | 朱振林, 李新华, 杨丽萍, 等. 不同土壤类型对花生品质的影响[J]. 山东农业科学, 2015, 47(12):67-70. |
Zhu ZL, Li XH, Yang LP, et al. Effects of different soil types on peanut quality[J]. Shandong Agric Sci, 2015, 47(12):67-70. | |
[8] | 杨丽萍, 郭洪海, 李新华, 等. 中国花生蛋白质含量空间分布预测初探[J]. 中国农业科技导报, 2010, 12(5):92-97. |
Yang LP, Guo HH, Li XH, et al. Preliminary studies on spatial distribution prediction of peanut protein content in China[J]. J Agric Sci Technol, 2010, 12(5):92-97. | |
[9] | 杨丽萍, 朱振林, 李新华, 等. 基于GIS技术探讨我国花生品质空间分异规律[J]. 安徽农业科学, 2012, 40(35):17399-17401. |
Yang LP, Zhu ZL, Li XH, et al. Discussion on spatial distribution differentiation law of peanut quality in China based on GIS technology[J]. J Anhui Agric Sci, 2012, 40(35):17399-17401. | |
[10] | 张吉民, 苗华荣, 吴兰荣, 等. 不同类型土壤和肥料对花生品质性状的影响[J]. 花生学报, 2003, 32(S1):372-374. |
Zhang JM, Miao HR, Wu LR, et al. Effects of different types of soil and fertilizer on quality traits of peanut[J]. J Peanut Sci, 2003, 32(S1):372-374. | |
[11] |
Qiao Q, Wang F, Zhang J, et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage[J]. Sci Rep, 2017, 7(1):3940.
doi: 10.1038/s41598-017-04213-7 URL |
[12] |
Pii Y, Borruso L, Brusetti L, et al. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome[J]. Plant Physiol Biochem, 2016, 99:39-48.
doi: 10.1016/j.plaphy.2015.12.002 URL |
[13] |
Helliwell JR, Sturrock CJ, Miller AJ, et al. The role of plant species and soil condition in the structural development of the rhizosphere[J]. Plant Cell Environ, 2019, 42(6):1974-1986.
doi: 10.1111/pce.13529 |
[14] |
Geng LL, Shao GX, Raymond B, et al. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut(Arachis hypogaea L.)rhizosphere microbiome[J]. Microbiol Res, 2018, 211:13-20.
doi: 10.1016/j.micres.2018.02.008 URL |
[15] |
Dai LX, Zhang GC, Yu ZP, et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. Int J Mol Sci, 2019, 20(9):2265.
doi: 10.3390/ijms20092265 URL |
[16] | 徐扬, 张冠初, 丁红, 等. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响[J]. 应用生态学报, 2020, 31(4):1305-1313. |
Xu Y, Zhang GC, Ding H, et al. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield[J]. Chin J Appl Ecol, 2020, 31(4):1305-1313. | |
[17] |
Chen F, Tan M, Yang YJ, et al. The diversity changes of soil microbial communities stimulated by climate, soil type and vegetation type analyzed via a functional gene array[J]. World J Microbiol Biotechnol, 2015, 31(11):1755-1763.
doi: 10.1007/s11274-015-1926-y URL |
[18] |
Girvan MS, Bullimore J, Pretty JN, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Appl Environ Microbiol, 2003, 69(3):1800-1809.
doi: 10.1128/AEM.69.3.1800-1809.2003 URL |
[19] |
İnceoğlu Ö, Falcão Salles J, van Elsas JD. Soil and cultivar type shape the bacterial community in the potato rhizosphere[J]. Microb Ecol, 2012, 63(2):460-470.
doi: 10.1007/s00248-011-9930-8 pmid: 21898103 |
[20] | 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征[J]. 土壤学报, 2019, 56(4):975-985. |
Yao XD, Li XG, Ding CF, et al. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation[J]. Acta Pedol Sin, 2019, 56(4):975-985. | |
[21] | 陈德乐, 王兴祥, 张亚楠, 等. 持续施用生物有机肥对花生产量和根际细菌群落的影响[J]. 土壤, 2021, 53(3):537-544. |
Chen DL, Wang XX, Zhang YN, et al. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community[J]. Soils, 2021, 53(3):537-544. | |
[22] |
Ci D, Tang Z, Ding H, et al. The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut(Arachis hypogaea L.)in saline alkali soil[J]. J Microbiol, 2021, 59(1):51-63.
doi: 10.1007/s12275-021-0317-3 URL |
[23] | 徐扬, 张冠初, 丁红, 等. 花生根际土壤细菌群落对干旱和盐胁迫的响应[J]. 中国油料作物学报, 2020, 42(6):985-993. |
Xu Y, Zhang GC, Ding H, et al. Response of rhizosphere bacterial community structure associated with peanut(Arachis hypogaea L.)to high salinity and drought stress[J]. Chin J Oil Crop Sci, 2020, 42(6):985-993. | |
[24] |
戴良香, 徐扬, 张冠初, 等. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8):1581-1592.
doi: 10.3724/SP.J.1006.2021.04160 |
Dai LX, Xu Y, Zhang GC, et al. Response of rhizosphere bacterial community diversity to salt stress in peanut[J]. Acta Agron Sin, 2021, 47(8):1581-1592. | |
[25] |
Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[26] | Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet J, 2011, 17(1):10. |
[27] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[28] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[29] |
Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1462):1935-1943.
doi: 10.1098/rstb.2005.1725 URL |
[30] |
Bates ST, Clemente JC, Flores GE, et al. Global biogeography of highly diverse protistan communities in soil[J]. Isme J, 2013, 7(3):652-659.
doi: 10.1038/ismej.2012.147 URL |
[31] |
Cai Y, Hua B, Gao L, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion:Focus on changes in microbial communities using high-throughput sequencing[J]. Bioresour Technol, 2017, 239:454-463.
doi: 10.1016/j.biortech.2017.04.071 URL |
[32] |
Kashtan N, Roggensack SE, Berta-Thompson JW, et al. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus[J]. ISME J, 2017, 11(9):1997-2011.
doi: 10.1038/ismej.2017.64 pmid: 28524867 |
[33] |
Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Appl Environ Microbiol, 2012, 78(23):8264-8271.
doi: 10.1128/AEM.01821-12 URL |
[34] |
Tap J, Derrien M, Törnblom H, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome[J]. Gastroenterology, 2017, 152(1):111-123. e8.
doi: 10.1053/j.gastro.2016.09.049 URL |
[35] | Mar JS, LaMere BJ, Lin DL, et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients[J]. mBio, 2016, 7(4):e01072-e01016. |
[36] |
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier[J]. Isme J, 2016, 10(7):1625-1641.
doi: 10.1038/ismej.2015.238 URL |
[37] |
张淼, 陈裕凤, 陈龙, 等. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J]. 生物技术通报, 2020, 36(9):167-179.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0667 |
Zhang M, Chen YF, Chen L, et al. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum(Roxb. )DC in different regions[J]. Biotechnol Bull, 2020, 36(9):167-179. | |
[38] | 王文晓, 李小伟, 黄文广, 等. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究[J]. 生态学报, 2020, 40(23):8660-8671. |
Wang WX, Li XW, Huang WG, et al. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus[J]. Acta Ecol Sin, 2020, 40(23):8660-8671. | |
[39] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
Jiang J, Song MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chin J Plant Ecol, 2010, 34(8):979-988. | |
[40] |
周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3):306-311.
doi: 10.1360/biodiv.070069 |
Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil mi-crobial diversity[J]. Biodivers Sci, 2007, 15(3):306-311.
doi: 10.1360/biodiv.070069 URL |
|
[41] | Ding XX, Liu GL, Fu SL, et al. Tree species composition and nutrient availability affect soil microbial diversity and composition across forest types in subtropical China[J]. CATENA, 2021, 201:105224. |
[42] | 韩世忠, 高人, 马红亮, 等. 建瓯万木林自然保护区两种森林类型土壤真菌多样性[J]. 生态学杂志, 2015, 34(9):2613-2620. |
Han SZ, Gao R, Ma HL, et al. Soil fungal diversities of two types of forests in Jian’ou Wanmulin Nature Reserve[J]. Chin J Ecol, 2015, 34(9):2613-2620. | |
[43] | 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ——基于DGGE方法对微生物种群的变化分析[J]. 中国农业科学, 2007, 40(10):2267-2273. |
Hu YS, Wu K, Li CX, et al. Effect of continuous cropping of cucumber on soil microbial populationⅡ──Variation analysis based on DGGE approach[J]. Sci Agric Sin, 2007, 40(10):2267-2273. | |
[44] | 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9):1801-1820. |
Xian WD, Zhang XZ, Li WJ. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiol Sin, 2020, 60(9):1801-1820. | |
[45] | 张静, 李会琳, 王岚, 等. 土地利用方式改变以及长期施肥处理对酸性土壤微生物群落结构的影响[J]. 四川环境, 2017, 36(6):36-44. |
Zhang J, Li HL, Wang L, et al. The impact of land use change and long-term fertilization on the microbial communities in acidic soils[J]. Sichuan Environ, 2017, 36(6):36-44. | |
[46] |
Epelde L, Lanzén A, Blanco F, et al. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine[J]. FEMS Microbiol Ecol, 2015, 91(1):1-11.
doi: 10.1093/femsec/fiu007 pmid: 25764532 |
[47] |
Faulwetter JL, Burr MD, Parker AE, et al. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms[J]. Microb Ecol, 2013, 65(1):111-127.
doi: 10.1007/s00248-012-0114-y pmid: 22961363 |
[48] | 马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3):54-67. |
Ma X, Luo ZZ, Zhang YQ, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sin, 2021, 30(3):54-67. | |
[49] |
Vigneron A, Cruaud P, Alsop E, et al. Beyond the tip of the iceberg;a new view of the diversity of sulfite-and sulfate-reducing microorganisms[J]. Isme J, 2018, 12(8):2096-2099.
doi: 10.1038/s41396-018-0155-4 pmid: 29805176 |
[50] |
Zhu P, Wang YP, Shi TT, et al. Intertidal zonation affects diversity and functional potentials of bacteria in surface sediments:a case study of the Golden Bay mangrove, China[J]. Appl Soil Ecol, 2018, 130:159-168.
doi: 10.1016/j.apsoil.2018.06.003 URL |
[51] |
Xie CH, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa[J]. Int J Syst Evol Microbiol, 2006, 56(Pt 4):889-893.
doi: 10.1099/ijs.0.64056-0 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[3] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[4] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[5] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[6] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[7] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[8] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[9] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[10] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[11] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[12] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[13] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[14] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[15] | 沈佳佳, 侯小改, 王二强, 王菲, 郭丽丽. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022, 38(6): 157-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||