生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 66-73.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0027
朱浩1,2(), 张严伟3, 刘润2, 梁艳2, 杨奕4, 徐天乐1(), 杨章平1,2
收稿日期:
2022-01-08
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
朱浩,男,硕士研究生,研究方向:奶牛乳腺炎流行规律及细菌耐药特性;E-mail: 基金资助:
ZHU Hao1,2(), ZHANG Yan-wei3, LIU Run2, LIANG Yan2, YANG Yi4, XU Tian-le1(), YANG Zhang-ping1,2
Received:
2022-01-08
Published:
2022-06-26
Online:
2022-07-11
摘要:
细菌耐药性一直是一项全球性的卫生挑战,加剧人们控制和治疗危及生命的细菌感染难度。尽管人们正在努力开发新的抗生素或其替代品,但在过去的二十多年,几乎没有新的抗生素或其替代品被临床批准使用。抗生素佐剂与抗生素的组合可以抑制细菌耐药性或增强抗生素抑菌性,为对抗多重耐药细菌提供了一种可持续和有效的策略。本文综述了抗生素佐剂的分类和作用机制。最后讨论了抗生素佐剂和抗生素联合使用策略的发展趋势和面临的挑战。
朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73.
ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects[J]. Biotechnology Bulletin, 2022, 38(6): 66-73.
图1 细菌耐药机制示意图 A:通过减少摄入和增加外排泵的活性来预防抗生素在细胞内的积累;B:通过产生水解酶导致进入细胞内的抗生素失活;C:通过改变或产生新的靶点,使药物结合能力降低或不能再与原位点结合
Fig. 1 Schematic diagram of bacterial drug resistance mechanism A:To prevent the accumulation of antibiotics in the cell by reducing uptake and increasing the activity of the efflux pump. B:To inactivate the antibiotics entering the cell by producing hydrolases. C:To reduce the ability of the drug to bind to the site by changing or creating new targets
[1] |
Yelin I, Kishony R. Antibiotic resistance[J]. Cell, 2018, 172(5):1136-1136. e1.
doi: S0092-8674(18)30162-4 pmid: 29474914 |
[2] | Llewelyn MJ, Fitzpatrick JM, Darwin E, et al. The antibiotic course has had its day[J]. BMJ, 2017, 358:j3418. |
[3] |
Shriram V, Khare T, Bhagwat R, et al. Inhibiting bacterial drug efflux pumps via Phyto-therapeutics to combat threatening antimicrobial resistance[J]. Front Microbiol, 2018, 9:2990.
doi: 10.3389/fmicb.2018.02990 pmid: 30619113 |
[4] | 杨文淇, 赵增祥, 徐耀, 等. 中药活性成分抑制多重耐药菌的研究进展[J]. 中国病原生物学杂志, 2021, 16(6):734-737. |
Yang WQ, Zhao ZX, Xu Y, et al. Advances in the use of constituents of traditional Chinese medicines to inhibit multidrug-resistant bacteria[J]. J Pathog Biol, 2021, 16(6):734-737. | |
[5] | 陈代杰. 细菌耐药性与抗生素增效剂开发[J]. 上海应用技术学院学报:自然科学版, 2016, 16(1):1-9. |
Chen DJ. Bacterial resistance and antibiotics synergist development[J]. J Shanghai Inst Technol Nat Sci, 2016, 16(1):1-9. | |
[6] | 肖建春, 肖健聪. 抗菌药的增效剂[J]. 农业知识, 2021(8):27-28. |
Xiao JC, Xiao JC. A synergist for antimicrobial drugs[J]. Agriculture Knowlege, 2021(8):27-28. | |
[7] | 曹珍, 薛璇玑, 张新新, 等. 临床常见耐药细菌及其天然抗生素增效剂的研究进展[J]. 中草药, 2020, 51(22):5868-5876. |
Cao Z, Xue XJ, Zhang XX, et al. Research progress on common clinical resistant bacteria and their natural synergist for antibiotics[J]. Chin Tradit Herb Drugs, 2020, 51(22):5868-5876. | |
[8] |
Clatworthy AE, Pierson E, Hung DT. Targeting virulence:a new paradigm for antimicrobial therapy[J]. Nat Chem Biol, 2007, 3(9):541-548.
pmid: 17710100 |
[9] | 孙国壮, 谢军, 陈平. 细菌致病机制及耐药机制的研究现状与进展[J]. 国际医药卫生导报, 2020, 26(14):2035-2040. |
Sun GZ, Xie J, Chen P. Research status and progress of bacterial pathogenesis and drug resistance mechanism[J]. Int Med Heal Guid News, 2020, 26(14):2035-2040. | |
[10] |
D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461.
doi: 10.1038/nature10388 URL |
[11] | Perron GG, Whyte L, Turnbaugh PJ, et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics[J]. PLoS One, 2015, 10(3):e0069533. |
[12] |
Durão P, Balbontín R, Gordo I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance[J]. Trends Microbiol, 2018, 26(8):677-691.
doi: 10.1016/j.tim.2018.01.005 URL |
[13] |
Ferri M, Ranucci E, Romagnoli P, et al. Antimicrobial resistance:a global emerging threat to public health systems[J]. Crit Rev Food Sci Nutr, 2017, 57(13):2857-2876.
doi: 10.1080/10408398.2015.1077192 URL |
[14] | 陈代杰. 从靶标到网络——抗菌药物作用机制与细菌耐药机制的研究进展[J]. 中国感染与化疗杂志, 2015, 15(1):84-90. |
Chen DJ. From target to network:research updates on the mechanisms of antimicrobial action and bacterial resistance[J]. Chin J Infect Chemother, 2015, 15(1):84-90. | |
[15] | 张泽辉, 宋雪娇, 黄程程, 等. 细菌的获得性耐药机制研究进展[J]. 动物医学进展, 2017, 38(1):74-77. |
Zhang ZH, Song XJ, Huang CC, et al. Progress on antimicrobial resistance mediated by changes of target protein in bacteria[J]. Prog Vet Med, 2017, 38(1):74-77. | |
[16] | 李凡凡, 郑越超. 天然生物碱抗菌活性及机理研究[J]. 医学信息, 2021, 34(17):49-52. |
Li FF, Zheng YC. Study on antibacterial activity and mechanism of natural alkaloids[J]. J Med Inf, 2021, 34(17):49-52. | |
[17] | 李敏敏. 黄连与环丙沙星联用对鸡源性沙门菌生物被膜的影响[D]. 哈尔滨: 东北农业大学, 2016. |
Li MM. Effects of rhizoma coptidis in combination with ciprofloxacin on Salmonella biofilm that isolated from chickens[D]. Harbin: Northeast Agricultural University, 2016. | |
[18] | 周剑雄, 吴送姑, 龚俊波, 等. 小檗碱的药理活性以及提升其口服生物利用度的策略[J]. 药学学报, 2022. |
Zhou JX, Wu SG, Gong JB, et al. Pharmacological activity of berberine and strategies for improving its oral bioavailability[J]. Acta Pharm Sin, 2022. | |
[19] |
Laudadio E, Cedraro N, Mangiaterra G, et al. Natural alkaloid berberine activity against Pseudomonas aeruginosa MexXY-mediated aminoglycoside resistance:in silico and in vitro studies[J]. J Nat Prod, 2019, 82(7):1935-1944.
doi: 10.1021/acs.jnatprod.9b00317 URL |
[20] |
Alshehri S, Imam SS, Hussain A, et al. Formulation of piperine ternary inclusion complex using β CD and HPMC:physicochemical characterization, molecular docking, and antimicrobial testing[J]. Processes, 2020, 8(11):1450.
doi: 10.3390/pr8111450 URL |
[21] | Mgbeahuruike EE, Stålnacke M, Vuorela H, et al. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials[J]. Antibiotics(Basel), 2019, 8(2):55. |
[22] | 郝霄鹏. 植物多酚的提取工艺、生物学功能及其在动物生产中应用的研究进展[J]. 饲料研究, 2021, 44(23):153-156. |
Hao XP. Research progress on extraction process, biological function and application of plant polyphenols in animal production[J]. Feed Res, 2021, 44(23):153-156. | |
[23] | 华德兴, 彭青, 黄源春, 等. Ecg/Egcg与β内酰胺类抗生素对MRSA的协同抗菌机制研究[J]. 中国感染与化疗杂志, 2010, 10(2):123-126. |
Hua DX, Peng Q, Huang YC, et al. The mechanism of synergistic antibacterial action between Ecg/Egcg and β-lactam antibiotics against MRSA[J]. Chin J Infect Chemother, 2010, 10(2):123-126. | |
[24] | 王婉茹. 分馏萃取选择性分离茶多酚中EGCG和ECG研究[D]. 岳阳: 湖南理工学院, 2020. |
Wang WR. Study on the selective separation of EGCG and ECG in tea polyphenols by fractionation extraction[D]. Yueyang: Hunan Institute of Science and Technology, 2020. | |
[25] | 郭亚楠, 蒋兵, 郭红云, 等. 黄腐酚和异黄腐酚对逆转耐药细胞株A549/DDP凋亡的影响[J]. 甘肃医药, 2021, 40(1):1-4. |
Guo YN, Jiang B, Guo HY, et al. Effects of xanthohumol and isoxanthohumol on reversing the apoptosis of drug-resistant cell line A549/DDP[J]. China Pract Med, 2021, 40(1):1-4. | |
[26] |
Bocquet L, Sahpaz S, Bonneau N, et al. Phenolic compounds from Humulus lupulus as natural antimicrobial products:new weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains[J]. Molecules, 2019, 24(6):1024.
doi: 10.3390/molecules24061024 URL |
[27] | Sanhueza L, Melo R, Montero R, et al. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli[J]. PLoS One, 2017, 12(2):e0172273. |
[28] | 王玲玲, 边祥雨, 高蔚娜, 等. 植物类黄酮提取纯化技术研究进展[J]. 营养学报, 2019, 41(6):606-610. |
Wang LL, Bian XY, Gao WN, et al. Advances in extraction and purification techniques for flavonoids in plants[J]. Acta Nutr Sin, 2019, 41(6):606-610. | |
[29] | 李棒棒. 槲皮素对金黄色葡萄球菌Coa抑制作用与机制研究[D]. 长春: 吉林大学, 2018. |
Li BB. Study on the inhibitory effect and mechanism of quercetin on Staphylococcus aureus coa[D]. Changchun: Jilin University, 2018. | |
[30] |
Kim MK, Lee TG, Jung M, et al. In vitro synergism and anti-biofilm activity of quercetin-pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus species[J]. Chem Pharm Bull(Tokyo), 2018, 66(11):1019-1022.
doi: 10.1248/cpb.c18-00380 URL |
[31] | 石依姗, 方建国, 施春阳, 等. 二氢杨梅素抗菌、抗病毒作用的研究进展[J]. 现代药物与临床, 2021, 36(2):408-413. |
Shi YS, Fang JG, Shi CY, et al. Research progress on antibacterial and antiviral activities of dihydromyricetin[J]. Drugs Clin, 2021, 36(2):408-413. | |
[32] |
Lin RD, Chin YP, Lee MH. Antimicrobial activity of antibiotics in combination with natural flavonoids against clinical extended-spectrum beta-lactamase(ESBL)-producing Klebsiella pneumoniae[J]. Phytother Res, 2005, 19(7):612-617.
doi: 10.1002/ptr.1695 URL |
[33] | 王锋, 徐静, 高亚南, 等. 黄芩苷对子痫前期大鼠胎盘滋养细胞增殖侵袭的作用机制研究[J]. 浙江中医药大学学报, 2021, 45(12):1358-1364, 1373. |
Wang F, Xu J, Gao YN, et al. Mechanism of baicalin on proliferation and invasion of placental trophoblast in preeclampsia rats[J]. J Zhejiang Chin Med Univ, 2021, 45(12):1358-1364, 1373. | |
[34] |
Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus[J]. J Pharm Pharmacol, 2000, 52(3):361-366.
pmid: 10757427 |
[35] | 贾会玲, 韩双双, 黄晓德, 等. 植物精油对植物病原菌的抑菌活性研究进展[J]. 中国野生植物资源, 2018, 37(6):47-52. |
Jia HL, Han SS, Huang XD, et al. Advances in antifungal activity of plant essential oil against plant pathogens[J]. Chin Wild Plant Resour, 2018, 37(6):47-52. | |
[36] |
Duarte A, Ferreira S, Silva F, et al. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii[J]. Phytomedicine, 2012, 19(3/4):236-238.
doi: 10.1016/j.phymed.2011.11.010 URL |
[37] |
Aelenei P, Rimbu CM, Guguianu E, et al. Coriander essential oil and linalool - interactions with antibiotics against Gram-positive and Gram-negative bacteria[J]. Lett Appl Microbiol, 2019, 68(2):156-164.
doi: 10.1111/lam.13100 pmid: 30471142 |
[38] |
Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius[J]. Ind Crops Prod, 2015, 71:197-204.
doi: 10.1016/j.indcrop.2015.03.058 URL |
[39] | 姜鸿瑞, 姜惠, 梁焕结, 等. 奶牛壳聚糖乳头保护膜药浴剂的制备及临床应用效果研究[J]. 家畜生态学报, 2020, 41(6):63-68. |
Jiang HR, Jiang H, Liang HJ, et al. Preparation and clinical application evaluation of a papilla protective film dipping agent with chitosan for dairy cattle[J]. J Domest Animal Ecol, 2020, 41(6):63-68. | |
[40] |
Mu HB, Zhang AM, Zhang L, et al. Inhibitory effects of chitosan in combination with antibiotics on Listeria monocytogenes biofilm[J]. Food Control, 2014, 38:215-220.
doi: 10.1016/j.foodcont.2013.10.032 URL |
[41] | Tin S, Sakharkar KR, Lim CS, et al. Activity of Chitosans in combination with antibiotics in Pseudomonas aeruginosa[J]. Int J Biol Sci, 2009, 5(2):153-160. |
[42] | 李静. 抗菌肽的生物学特性及在畜禽养殖中的应用[J]. 现代畜牧科技, 2021(9):23-24. |
Li J. Biological functions of antimicrobial peptides and its application in livestock and poultry breeding[J]. Mod Animal Husb Sci Technol, 2021(9):23-24. | |
[43] | 刘倚帆, 徐良, 朱海燕, 等. 抗菌肽与抗生素对革兰氏阴性菌和革兰氏阳性菌的体外协同抗菌效果研究[J]. 动物营养学报, 2010, 22(5):1457-1463. |
Liu YF, Xu L, Zhu HY, et al. An in vitro study on combination of antimicrobial peptides and antibiotics against gram-negative and gram-positive bacteria[J]. Chin J Animal Nutr, 2010, 22(5):1457-1463. | |
[44] |
Hwang IS, Hwang JS, Hwang JH, et al. Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria[J]. Curr Microbiol, 2013, 66(1):56-60.
doi: 10.1007/s00284-012-0239-8 URL |
[45] | Katva S, Das S, Moti HS, et al. Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis[J]. Pharmacogn Mag, 2018, 13(Suppl 4):S828-S833. |
[46] |
Song MR, Liu Y, Huang XY, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens[J]. Nat Microbiol, 2020, 5(8):1040-1050.
doi: 10.1038/s41564-020-0723-z URL |
[47] | 周铁丽, 徐雯雅. 抗菌治疗中噬菌体与抗菌药物联合使用的研究进展及前景[J]. 浙江医学, 2021, 43(7):691-695. |
Zhou TL, Xu WY. Research progress and prospect of bacteriophage combined with antibiotics in antibacterial therapy[J]. Zhejiang Med J, 2021, 43(7):691-695. | |
[48] |
Verma V, Harjai K, Chhibber S. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment[J]. J Antimicrob Chemother, 2009, 64(6):1212-1218.
doi: 10.1093/jac/dkp360 URL |
[49] |
Knezevic P, Curcin S, Aleksic V, et al. Phage-antibiotic synergism:a possible approach to combatting Pseudomonas aeruginosa[J]. Res Microbiol, 2013, 164(1):55-60.
doi: 10.1016/j.resmic.2012.08.008 pmid: 23000091 |
[50] | Liu Y, Jia YQ, Yang KN, et al. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria[J]. Adv Sci(Weinh), 2020, 7(12):1902227. |
[51] |
Liu Y, Li RC, Xiao X, et al. Molecules that inhibit bacterial resistance enzymes[J]. Molecules, 2018, 24(1):43.
doi: 10.3390/molecules24010043 URL |
[52] |
Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors[J]. Nat Rev Microbiol, 2019, 17(5):295-306.
doi: 10.1038/s41579-019-0159-8 URL |
[53] |
Douafer H, Andrieu V, Phanstiel O 4th, et al. Antibiotic adjuvants:make antibiotics great again![J]. J Med Chem, 2019, 62(19):8665-8681.
doi: 10.1021/acs.jmedchem.8b01781 pmid: 31063379 |
[54] | White AR, Kaye C, Poupard J, et al. Augmentin(amoxicillin/clavulanate)in the treatment of community-acquired respiratory tract infection:a review of the continuing development of an innovative antimicrobial agent[J]. J Antimicrob Chemother, 2004, 53(Suppl 1):i3-i20. |
[55] |
Wright GD. Antibiotic adjuvants:rescuing antibiotics from resistance[J]. Trends Microbiol, 2016, 24(11):862-871.
doi: 10.1016/j.tim.2016.06.009 URL |
[56] |
van Bambeke F, Glupczynski Y, Plésiat P, et al. Antibiotic efflux pumps in prokaryotic cells:occurrence, impact on resistance and strategies for the future of antimicrobial therapy[J]. J Antimicrob Chemother, 2003, 51(5):1055-1065.
doi: 10.1093/jac/dkg224 URL |
[57] |
Malléa M, Mahamoud A, Chevalier J, et al. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates[J]. Biochem J, 2003, 376(Pt 3):801-805.
doi: 10.1042/bj20030963 URL |
[58] |
Salaheen S, Peng MF, Joo J, et al. Eradication and sensitization of methicillin resistant Staphylococcus aureus to methicillin with bioactive extracts of berry pomace[J]. Front Microbiol, 2017, 8:253.
doi: 10.3389/fmicb.2017.00253 pmid: 28270804 |
[59] | Shi DY, Hao H, Wei ZL, et al. Combined exposure to non-antibiotic pharmaceutics and antibiotics in the gut synergistically promote the development of multi-drug-resistance in Escherichia coli[J]. Gut Microbes, 2022, 14(1):2018901. |
[60] | Delcour AH. Outer membrane permeability and antibiotic resistance[J]. Biochim Biophys Acta BBA Proteins Proteom, 2009, 1794(5):808-816. |
[61] |
Yamaguchi A, Ohmori H, Kaneko-Ohdera M, et al. Delta pH-dependent accumulation of tetracycline in Escherichia coli[J]. Antimicrob Agents Chemother, 1991, 35(1):53-56.
doi: 10.1128/AAC.35.1.53 pmid: 2014981 |
[62] |
Ejim L, Farha MA, Falconer SB, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy[J]. Nat Chem Biol, 2011, 7(6):348-350.
doi: 10.1038/nchembio.559 URL |
[63] |
Dhara L, Tripathi A. Cinnamaldehyde:a compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(1):65-73.
doi: 10.1007/s10096-019-03692-y URL |
[1] | 周振超, 郑吉, 帅馨怡, 林泽俊, 陈红. 高通量分析人类粪便、皮肤和水环境中共享抗生素抗性基因的分布[J]. 生物技术通报, 2023, 39(7): 288-297. |
[2] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[3] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[4] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[5] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[6] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[7] | 胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34. |
[8] | 刘艺云, 邓利敏, 岳慧颖, 岳超, 刘健华. 质粒接合转移及其抑制剂的研究进展[J]. 生物技术通报, 2022, 38(9): 35-46. |
[9] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[10] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[11] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[12] | 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. |
[13] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[14] | 田露, 吴咪, 缑敬轩, 龚国利. 细菌素的研究与应用进展[J]. 生物技术通报, 2021, 37(4): 224-233. |
[15] | 马涛, 陆唯, 李松励, 樊霞. 畜禽微生物耐药组研究进展[J]. 生物技术通报, 2021, 37(1): 113-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||