生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 101-109.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1367
关志秀(), 汪燕, 梁成刚(), 韦春玉, 黄娟, 陈庆富
收稿日期:
2021-10-29
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
关志秀,女,硕士研究生,研究方向:作物生理与分子调控机制;E-mail: 基金资助:
GUAN Zhi-xiu(), WANG Yan, LIANG Cheng-gang(), WEI Chun-yu, HUANG Juan, CHEN Qing-fu
Received:
2021-10-29
Published:
2022-08-26
Online:
2022-09-14
摘要:
植物CBL基因在逆境胁迫应答方面具有重要作用,鉴定苦荞FtCBL基因,并探索其对干旱高钙胁迫的响应具有重要意义。利用生物信息学方法鉴定FtCBL基因,通过模拟胁迫实验,研究FtCBL基因在干旱、高钙和干旱+高钙下的表达规律。共鉴定到5个苦荞FtCBL基因,均具有EF-hand钙结合结构域,分别定位于Ft3(2个)、Ft4(1个)和Ft5(2个)染色体上,cDNA长度在642-684 bp间,编码蛋白含213-227个氨基酸,序列高度保守。干旱下苦荞CAT与APX活性急剧升高,但在高钙下差异不显著,说明苦荞较适宜高钙环境生长。干旱下FtCBL1在8 h、24 h下调表达,FtCBL2上调表达,FtCBL3-1在8 h上调表达;高钙下FtCBL1在8 h、24 h和FtCBL9在24 h下调表达,FtCBL2上调表达;干旱+高钙下FtCBL3-1在8 h、24 h上调表达。共鉴定到5个FtCBL基因,其中FtCBL1、FtCBL2响应干旱、高钙胁迫,FtCBL3-1响应干旱、干旱+高钙胁迫,FtCBL9响应高钙胁迫。
关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109.
GUAN Zhi-xiu, WANG Yan, LIANG Cheng-gang, WEI Chun-yu, HUANG Juan, CHEN Qing-fu. Identification of FtCBL Genes in Fagopyrum tataricum and Their Stress Responses to Drought and High Calcium[J]. Biotechnology Bulletin, 2022, 38(8): 101-109.
基因编号Gene No. | 引物序列 Primer sequence(5'-3') | |||
---|---|---|---|---|
FtPinG0000638500.01 | F | CTGTGTCTCTTGCCTCCC | R | CAATGGCTCCCTTGTGCT |
FtPinG0003042400.01 | F | ACTTTCTGTGTTCCATCC | R | TACCACCATTTGCTTTAC |
FtPinG0003981900.01 | F | GGCACGAGGTCAAGCAAATG | R | TTGTCGCCATTCGGATCTGT |
FtPinG0007340500.01 | F | AGCATTTCCTCGCTTCGT | R | CATCGTCAATCACCGCAC |
FtPinG0008915000.01 | F | CTTTCTGTTTTCCATCCG | R | TCGTCCTTGTCAATCCTT |
FtActin | F | gaaattcgcaagtaccagaagag | R | ccaacaaggtatgcctcagc |
表1 RT-qPCR基因表达的引物序列
Table 1 Primer sequences for RT-qPCR of gene expression
基因编号Gene No. | 引物序列 Primer sequence(5'-3') | |||
---|---|---|---|---|
FtPinG0000638500.01 | F | CTGTGTCTCTTGCCTCCC | R | CAATGGCTCCCTTGTGCT |
FtPinG0003042400.01 | F | ACTTTCTGTGTTCCATCC | R | TACCACCATTTGCTTTAC |
FtPinG0003981900.01 | F | GGCACGAGGTCAAGCAAATG | R | TTGTCGCCATTCGGATCTGT |
FtPinG0007340500.01 | F | AGCATTTCCTCGCTTCGT | R | CATCGTCAATCACCGCAC |
FtPinG0008915000.01 | F | CTTTCTGTTTTCCATCCG | R | TCGTCCTTGTCAATCCTT |
FtActin | F | gaaattcgcaagtaccagaagag | R | ccaacaaggtatgcctcagc |
基因编号 Gene No. | 序列长度Sequence length/bp | 氨基酸Amino acid/aa | 分子量Molecular weight/Da | 等电点pI | 脂肪族氨基酸指数 Aliphatic index | 染色体 Chromosome | α-螺旋 Alpha helix/% | 延长链 Extended strand/% | β-折叠 Beta turn/% | 无规卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|
FtPinG0003981900.01 | 642 | 213 | 24 343.7 | 4.8 | 86.01 | Ft3 | 49.30 | 7.51 | 7.51 | 35.68 |
FtPinG0007340500.01 | 684 | 227 | 26 265.9 | 4.9 | 90.62 | Ft3 | 54.63 | 6.17 | 8.37 | 30.84 |
FtPinG0003042400.01 | 678 | 225 | 25 755.3 | 4.8 | 89.69 | Ft5 | 56.00 | 4.44 | 7.11 | 32.44 |
FtPinG0008915000.01 | 681 | 226 | 25 887.4 | 4.8 | 90.13 | Ft4 | 53.98 | 7.08 | 7.08 | 31.86 |
FtPinG0000638500.01 | 642 | 213 | 24 305.5 | 4.7 | 86.95 | Ft5 | 51.17 | 6.57 | 6.10 | 36.15 |
表2 苦荞FtCBL基因理化性质分析
Table 2 Physicochemical properties analysis of FtCBL in F. tataricum
基因编号 Gene No. | 序列长度Sequence length/bp | 氨基酸Amino acid/aa | 分子量Molecular weight/Da | 等电点pI | 脂肪族氨基酸指数 Aliphatic index | 染色体 Chromosome | α-螺旋 Alpha helix/% | 延长链 Extended strand/% | β-折叠 Beta turn/% | 无规卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|
FtPinG0003981900.01 | 642 | 213 | 24 343.7 | 4.8 | 86.01 | Ft3 | 49.30 | 7.51 | 7.51 | 35.68 |
FtPinG0007340500.01 | 684 | 227 | 26 265.9 | 4.9 | 90.62 | Ft3 | 54.63 | 6.17 | 8.37 | 30.84 |
FtPinG0003042400.01 | 678 | 225 | 25 755.3 | 4.8 | 89.69 | Ft5 | 56.00 | 4.44 | 7.11 | 32.44 |
FtPinG0008915000.01 | 681 | 226 | 25 887.4 | 4.8 | 90.13 | Ft4 | 53.98 | 7.08 | 7.08 | 31.86 |
FtPinG0000638500.01 | 642 | 213 | 24 305.5 | 4.7 | 86.95 | Ft5 | 51.17 | 6.57 | 6.10 | 36.15 |
图2 苦荞FtCBL基因结构分析 A:FtCBL DNA结构分析;B:FtCBL启动子顺式元件分析
Fig.2 Analysis of FtCBL gene structure in F. tataricum A:Analysis of FtCBL DNA structure. B:Cis-element analysis of FtCBL promoter
图5 苦荞FtCBL蛋白结构域(A)与三维结构(B)预测 A中红色区域表示EF-hand-8结构,绿色区域表示EF-hand-7结构
Fig.5 Prediction of domain(A)and tertiary structure(B)in FtCBL protein in F. tataricum The red and green areas refer to the EF-hand-8 and EF-hand-7 structure,respectively in A
图6 不同胁迫对苦荞CAT与APX活性的影响 *与**分别表示差异处理与对照间数据差异达到显著与极显著水平,下同
Fig.6 Effects of different stress on the CAT and APX activities in F. tataricum * and ** refer to significant and extremely significant difference between treatment and control,respectively. The same below
[1] |
Ma X, Li QH, Yu YN, et al. The CBL-CIPK pathway in plant response to stress signals[J]. Int J Mol Sci, 2020, 21(16):5668.
doi: 10.3390/ijms21165668 URL |
[2] |
Jiang M, Zhao CL, Zhao MF, et al. Phylogeny and evolution of calcineurin B-like(CBL)gene family in grass and functional analyses of rice CBLs[J]. J Plant Biol, 2020, 63(2):117-130.
doi: 10.1007/s12374-020-09240-y URL |
[3] |
Sánchez-Barrena MJ, Martínez-Ripoll M, Albert A. Structural biology of a major signaling network that regulates plant abiotic stress:the CBL-CIPK mediated pathway[J]. Int J Mol Sci, 2013, 14(3):5734-5749.
doi: 10.3390/ijms14035734 pmid: 23481636 |
[4] | 蔡诚诚, 王伟莉, 张杰, 等. 马铃薯CBL家族基因的鉴定及序列分析[J]. 分子植物育种, 2019, 17(9):2778-2784. |
Cai CC, Wang WL, Zhang J, et al. Identification and sequence analysis of CBL family genes in potato[J]. Mol Plant Breed, 2019, 17(9):2778-2784. | |
[5] |
Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945.
pmid: 9632394 |
[6] |
Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiol, 2004, 134 (1):43-58.
pmid: 14730064 |
[7] | 李利斌, 刘开昌, 王殿峰, 等. 玉米CBL基因的生物信息学分析[J]. 玉米科学, 2010, 18(1):6-11. |
Li LB, Liu KC, Wang DF, et al. Bioinformatics analysis on maize CBL genes[J]. J Maize Sci, 2010, 18(1):6-11. | |
[8] |
Li J, Jiang MM, Ren L, et al. Identification and characterization of CBL and CIPK gene families in eggplant(Solanum melongena L. )[J]. Mol Genet Genomics, 2016, 291(4):1769-1781.
doi: 10.1007/s00438-016-1218-8 URL |
[9] |
Feng XM, Wang YJ, Zhang NN, et al. Comparative phylogenetic analysis of CBL reveals the gene family evolution and functional divergence in Saccharum spontaneum[J]. BMC Plant Biol, 2021, 21(1):395.
doi: 10.1186/s12870-021-03175-3 URL |
[10] |
Xi Y, Liu JY, Dong C, et al. The CBL and CIPK gene family in grapevine(Vitis vinifera):genome-wide analysis and expression profiles in response to various abiotic stresses[J]. Front Plant Sci, 2017, 8:978.
doi: 10.3389/fpls.2017.00978 URL |
[11] |
Jung HJ, Kayum MA, Thamilarasan SK, et al. Molecular characterisation and expression profiling of calcineurin B-like(CBL)genes in Chinese cabbage under abiotic stresses[J]. Funct Plant Biol, 2017, 44(7):739.
doi: 10.1071/FP16437 URL |
[12] |
Su WH, Huang L, Ling H, et al. Sugarcane calcineurin B-like(CBL)genes play important but versatile roles in regulation of responses to biotic and abiotic stresses[J]. Sci Rep, 2020, 10(1):167.
doi: 10.1038/s41598-019-57058-7 URL |
[13] |
Zhang F, Li L, Jiao ZZ, et al. Characterization of the calcineurin B-Like(CBL)gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments[J]. Plant Sci, 2016, 253:118-129.
doi: S0168-9452(16)30480-0 pmid: 27968980 |
[14] |
Song YJ, Dong YM, Wang J, et al. Tartary buckwheat(Fagopyrum tataricum Gaertn. )landraces cultivated by Yi people in Liangshan, China[J]. Genet Resour Crop Evol, 2020, 67(3):745-761.
doi: 10.1007/s10722-019-00852-z URL |
[15] | 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报:自然科学版, 2018, 36(3):1-7, 131. |
Chen QF. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. J Guizhou Norm Univ Nat Sci, 2018, 36(3):1-7, 131. | |
[16] | 吴姗姗, 夏雨, 吴俏槿, 等. 五种苦荞的营养成分分析及比较[J]. 食品工业, 2021, 42(9):334-337. |
Wu SS, Xia Y, Wu QJ, et al. Analysis of nutritional components of Tartary buckwheat in different varieties and different producing areas[J]. Food Ind, 2021, 42(9):334-337. | |
[17] | 沈灵智, 盛宇华, 鲁清峰, 等. 苦荞功能性及食品开发研究进展[J]. 食品研究与开发, 2021, 42(19):192-199. |
Shen LZ, Sheng YH, Lu QF, et al. Progress in functional research and food development of tartary buckwheat(Fagopyrum tataricum)[J]. Food Res Dev, 2021, 42(19):192-199. | |
[18] | 章培军, 李自青, 邢雁霞, 等. 苦荞粗粮饼干对糖尿病患者血糖控制效果的影响[J]. 山西大同大学学报:自然科学版, 2021, 37(5):62-65, 101. |
Zhang PJ, Li ZQ, Xing YX, et al. Effect of tartary buckwheat biscuits on blood glucose control in diabetic patients[J]. J Shanxi Datong Univ Nat Sci Ed, 2021, 37(5):62-65, 101. | |
[19] |
Zhang JM, Wang D, Wu YH, et al. Lipid-polymer hybrid nanoparticles for oral delivery of tartary buckwheat flavonoids[J]. J Agric Food Chem, 2018, 66(19):4923-4932.
doi: 10.1021/acs.jafc.8b00714 URL |
[20] | 白云星, 周运超, 周鑫伟, 等. 喀斯特土壤与喀斯特区域土壤关系的探讨——以贵州省普定县后寨河小流域为例[J]. 土壤, 2020, 52(2):414-420. |
Bai YX, Zhou YC, Zhou XW, et al. Differentiating Karst soil and soil in Karst region—A case study of Houzhai River watershed in Puding County of guizhou Province[J]. Soils, 2020, 52(2):414-420. | |
[21] | 王振耀, 林清, 赵银军. 喀斯特地区碳酸盐岩风化成土相关问题[J]. 广西师范学院学报:自然科学版, 2019, 36(1):94-99. |
Wang ZY, Lin Q, Zhao YJ. Problems related to weathering and pedogenesis of carbonate rock in Karst area[J]. J Guangxi Teach Educ Univ Nat Sci Ed, 2019, 36(1):94-99. | |
[22] | 徐学池, 黄媛, 何寻阳, 等. 土壤水分和温度对西南喀斯特棕色石灰土无机碳释放的影响[J]. 环境科学, 2019, 40(4):1965-1972. |
Xu XC, Huang Y, He XY, et al. Effect of soil moisture and temperature on the soil inorganic carbon release of brown limestone soil in the Karst region of southwestern China[J]. Environ Sci, 2019, 40(4):1965-1972. | |
[23] | 邓平, 吴敏, 赵英, 等. 干旱胁迫下外源钙对桂西北喀斯特地区青冈栎种子萌发的影响[J]. 西北农林科技大学学报:自然科学版, 2020, 48(2):69-79. |
Deng P, Wu M, Zhao Y, et al. Effects of exogenous calcium on seed germination of Cyclobalanopsis glauca in Karst area of Northwestern Guangxi under draught stress[J]. J Northwest A F Univ Nat Sci Ed, 2020, 48(2):69-79. | |
[24] | 王佳敏, 宋海燕, 陈金艺, 等. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略[J]. 生态学报, 2020, 40(13):4566-4572. |
Wang JM, Song HY, Chen JY, et al. Response strategies of Lolium perenne L. to Karst heterogeneous habitats under drought stress[J]. Acta Ecol Sin, 2020, 40(13):4566-4572. | |
[25] |
Zhang LJ, Li XX, Ma B, et al. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance[J]. Mol Plant, 2017, 10(9):1224-1237.
doi: 10.1016/j.molp.2017.08.013 URL |
[26] | 沈起栋, 李欣音, 庞程, 等. 糖芥种子萌发特性的研究[J]. 种子, 2021, 40(10):110-113, 120. |
Shen QD, Li XY, Pang C, et al. Study on seed germination characteristics of Erysimum bungei[J]. Seed, 2021, 40(10):110-113, 120. | |
[27] | 薛璐, 杨倩, 郭慧, 等. 黄瓜耐盐根际促生菌的筛选及评价[J]. 中国瓜菜, 2021, 34(9):26-32. |
Xue L, Yang Q, Guo H, et al. Screening and evaluation of the salt-tolerant plant growth-promoting rhizobacteria on cucumber[J]. China Cucurbits Veg, 2021, 34(9):26-32. | |
[28] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[29] | 曾秀存, 孙万仓, 方彦, 等. 白菜型冬油菜抗坏血酸过氧化物酶(APX)基因的克隆、表达及其活性分析[J]. 作物学报, 2013, 39(8):1400-1408. |
Zeng XC, Sun WC, Fang Y, et al. Cloning, expression, and activity analysis of ascorbate peroxidase(APX)gene from winter turnip rape(Brassica campestris L. )[J]. Acta Agron Sin, 2013, 39(8):1400-1408.
doi: 10.3724/SP.J.1006.2013.01400 URL |
|
[30] | 梁成刚, 韦春玉, 汪燕, 等. 苦荞FtERD家族糖转运基因的鉴定与分析[J]. 福建农林大学学报:自然科学版, 2021, 50(6):734-740. |
Liang CG, Wei CY, Wang Y, et al. Identification and bioinformatics analysis of sugar transporter gene of FtERD family in tartary buckwheat[J]. J Fujian Agric For Univ Nat Sci Ed, 2021, 50(6):734-740. | |
[31] | 伍国强, 谢玲玲. 甜菜CBL基因的基因组鉴定以及盐胁迫下的表达模式[C]. 中国湖北武汉: 中国作物学会, 2020. |
WU GQ, Xie LL. Genome identification of CBL gene and its expression pattern under salt stress in Sugar beet[C]. Wuhan:Crop Science Society of China, 2020. | |
[32] | 赵晋锋, 余爱丽, 田岗, 等. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析[J]. 作物学报, 2013, 39(2):360-367. |
Zhao JF, Yu AL, Tian G, et al. Identification of CBL genes from foxtail millet(Setaria italica[L. ]beauv. )and its expression under drought and salt stresses[J]. Acta Agron Sin, 2013, 39(2):360-367.
doi: 10.3724/SP.J.1006.2013.00360 URL |
|
[33] |
曹齐卫, 刘明毓, 陈伟, 等. 黄瓜CBL基因的鉴定和特征分析[J]. 核农学报, 2016, 30(11):2127-2132.
doi: 10.11869/j.issn.100-8551.2016.11.2127 |
Cao QW, Liu MY, Chen W, et al. Identification and characterization of cucumber CBL genes[J]. J Nucl Agric Sci, 2016, 30(11):2127-2132. | |
[34] | 张兴政, 黄浩捷, 孙一闻, 等. 蒺藜苜蓿CBL基因家族全基因组鉴定及表达分析[J]. 中国草地学报, 2021, 43(7):1-11. |
Zhang XZ, Huang HJ, Sun YW, et al. Genome-wide identification and expression analysis of CBL gene family in Medicago truncatula[J]. Chin J Grassland, 2021, 43(7):1-11. | |
[35] |
荣玉萍, 唐彬, 李鹏, 等. 苦荞NAC转录因子FtNAC17的鉴定及表达分析[J]. 生物技术通报, 2021, 37(1):174-181.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0556 |
Rong YP, Tang B, Li P, et al. Identification and expression of NAC transcription factor FtNAC17 in tartary buckwheat[J]. Biotechnol Bull, 2021, 37(1):174-181. | |
[36] |
Sun T, Wang Y, Wang M, et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat(Triticum aestivum L. )[J]. BMC Plant Biol, 2015, 15:269.
doi: 10.1186/s12870-015-0657-4 URL |
[37] |
Wang MY, Gu D, Liu TS, et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J]. Plant Mol Biol, 2007, 65(6):733-746.
doi: 10.1007/s11103-007-9238-8 URL |
[38] |
Cheong YH, Kim KN, Pandey GK, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J]. Plant Cell, 2003, 15(8):1833-1845.
pmid: 12897256 |
[39] | 韩玉燕, 杨健君, 程立宝. 莲藕盐诱导基因CBL2的克隆与表达[J]. 生物技术, 2020, 30(3):209-213. |
Han YY, Yang JJ, Cheng LB. Cloning and expression analysis of CBL2 gene in Lotus loot(Nelumbo Nucifera Gaertn)[J]. Biotechnology, 2020, 30(3):209-213. | |
[40] | 蔡琼, 丁贵杰, 丁波, 等. 马尾松PmCBL3基因的克隆及其表达分析[J]. 南京林业大学学报:自然科学版, 2017, 41(4):30-36. |
Cai Q, Ding GJ, Ding B, et al. Cloning and expression analysis of PmCBL3 from Pinus massoniana[J]. J Nanjing For Univ Nat Sci Ed, 2017, 41(4):30-36. | |
[41] | 胡斐, 曾巧英, 凌秋平, 等. 转拟南芥AtCBL9和AtCIPK23基因甘蔗对低钾胁迫的响应研究[J]. 甘蔗糖业, 2015(3):5-9. |
Hu F, Zeng QY, Ling QP, et al. Research on response of transgenic sugarcane carrying AtCBL9 and AtCIPK23 genes under low potassium stress[J]. Sugarcane Canesugar, 2015(3):5-9. | |
[42] | 李雪垠, 武懿茂, 张凤洁, 等. 谷子HSF转录因子基因鉴定与生物信息学分析[J]. 山西农业大学学报:自然科学版, 2019, 39(4):1-8. |
Li XY, Wu YM, Zhang FJ, et al. Identification and bioinformatic analyses of HSF transcription factor genes in foxtail millet Setaria italic[J]. J Shanxi Agric Univ Nat Sci Ed, 2019, 39(4):1-8. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[5] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[6] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[7] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[8] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[9] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[10] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[11] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[12] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[13] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[14] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[15] | 于国红, 刘朋程, 李磊, 李明哲, 崔海英, 郝洪波, 郭安强. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||