生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 84-95.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0497
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
李柳1,2,3(), 穆迎春2,3, 刘璐2,3, 张洪玉2, 徐锦华2,3, 杨臻2,3, 乔璐2,3, 宋金龙2,3()
收稿日期:
2022-04-22
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
李柳,女,硕士研究生,研究方向:水产微生物;E-mail: 基金资助:
LI Liu1,2,3(), MU Ying-chun2,3, LIU Lu2,3, ZHANG Hong-yu2, XU Jin-hua2,3, YANG Zhen2,3, QIAO Lu2,3, SONG Jin-long2,3()
Received:
2022-04-22
Published:
2022-09-26
Online:
2022-10-11
摘要:
氟喹诺酮类抗生素属于喹诺酮类抗生素,是一类人畜通用的抗生素。近年来,被广泛应用于人类和畜牧、水产等养殖业领域,然而其大量使用,造成在环境中的不断残留和累积,给自然环境和人类健康造成了较大威胁。现有研究表明,微生物降解是有效去除氟喹诺酮类抗生素残留污染的有效方法之一。本文总结和介绍了近年来氟喹诺酮类抗生素微生物降解单株菌和混合菌群、微生物降解酶、降解途径以及微生物降解氟喹诺酮类抗生素的实际应用,并对目前氟喹诺酮类抗生素微生物降解研究中存在的问题进行了分析,以及对未来氟喹诺酮类抗生素微生物降解研究的重点进行了探讨,以期为后续的研究提供参考。
李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95.
LI Liu, MU Ying-chun, LIU Lu, ZHANG Hong-yu, XU Jin-hua, YANG Zhen, QIAO Lu, SONG Jin-long. Research Progress on Contamination Control of Fluoroquinolone Antibiotics and Drug Resistance Genes[J]. Biotechnology Bulletin, 2022, 38(9): 84-95.
氟喹诺酮类抗生素 Fluoroquinolone antibiotics | 菌株 Strains | 初始浓度 Initial concentration/(mg·L-1) | 降解率 Degradation rate /% | 参考文献Reference |
---|---|---|---|---|
环丙沙星Ciprofloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.15 | 85(28 d) | [ | |
Ochrobactrum sp. JOB | 10 | 34(14 d) | [ | |
Thermus thermophiles C419 | 5 | 57(5 d) | [ | |
Bradyrhizobium sp. GLC_01 | 0.05 | 70(8 d) | [ | |
Bacillus sp. KM504129 | 5 | 74(14 d) | [ | |
Bacillus subtilius | 5 | 70(14 d) | [ | |
Enterobacter sp. KM504128 | 5 | 94(14 d) | [ | |
Lactobacillus gesseri KM4055978 | 5 | 100(14 d) | [ | |
Micrococcus luteus | 5 | 56(14 d) | [ | |
Tepidiphilus sp. M4 | 30 | 49(10 d) | [ | |
Lactobacillus reuteri WQ-Y1 | 4 | 65(1 d) | [ | |
Paraclostridium sp. | 5 | 74(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 67.7(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Panus tigrinus 577.79 | 10 | 60(14 d) | [ | |
Pleurotus ostreatus | 1.50 | 95.07(14 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 98.5(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 64.5(8 d) | [ | |
Trichoderma asperellum | 0.20 | 81(13 d) | [ | |
Trichoderma harzianum | 0.20 | 21(13 d) | [ | |
诺氟沙星Norfloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.11 | 85(28 d) | [ | |
Mycobacterium sp. | 100 | 75-98.4(7 d) | [ | |
Staphylococcus capraeNOR-36 | 5 | 92.6(10 d) | [ | |
Thermus thermophiles C419 | 5 | 63(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 51(10 d) | [ | |
Paraclostridium sp. | 5 | 60(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 68.9(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 85(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 96.4(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 73.2(8 d) | [ | |
Fusarium verticillioides MH045733 | 50 | 37.54(7 d) | [ | |
Fusarium solani MH045734 | 50 | 33.59(7 d) | [ | |
Aspergillus sydowii MH045735 | 50 | 15.67(7 d) | [ | |
Penicillium janthinellum MH045736 | 50 | 46.31(7 d) | [ | |
氧氟沙星Ofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 70(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 47(10 d) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Pseudomonas sp. F2 | 5 | 100 | [ | |
Labrys portucalensis F11 | 0.45 | 34.6(28 d) | [ | |
Rhodococcus sp. FP1 | 0.45 | 39.3(28 d) | [ | |
真菌Fungi | ||||
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Trichoderma asperellum | 0.20 | 44(13 d) | [ | |
Trichoderma harzianum | 0.20 | 32(13 d) | [ | |
恩诺沙星Enrofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 74(72 h) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Enterococcus faecalis BSFL-1 | 100 | 63.2(96 h) | [ | |
Proteus mirabilis BSFL-2 | 100 | 57.2(96 h) | [ | |
Enterococcus faecalis BSFL-3 | 100 | 65.9(96 h) | [ | |
真菌Fungi | ||||
Agrocybe praecox | —— | —— | [ | |
Coprinus macrocephalus | —— | —— | [ | |
Cyathus stercoreus | —— | —— | [ |
表1 已报道的降解氟喹诺酮类抗生素的菌株
Table 1 Reported strains that degrade fluoroquinolone antibiotics
氟喹诺酮类抗生素 Fluoroquinolone antibiotics | 菌株 Strains | 初始浓度 Initial concentration/(mg·L-1) | 降解率 Degradation rate /% | 参考文献Reference |
---|---|---|---|---|
环丙沙星Ciprofloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.15 | 85(28 d) | [ | |
Ochrobactrum sp. JOB | 10 | 34(14 d) | [ | |
Thermus thermophiles C419 | 5 | 57(5 d) | [ | |
Bradyrhizobium sp. GLC_01 | 0.05 | 70(8 d) | [ | |
Bacillus sp. KM504129 | 5 | 74(14 d) | [ | |
Bacillus subtilius | 5 | 70(14 d) | [ | |
Enterobacter sp. KM504128 | 5 | 94(14 d) | [ | |
Lactobacillus gesseri KM4055978 | 5 | 100(14 d) | [ | |
Micrococcus luteus | 5 | 56(14 d) | [ | |
Tepidiphilus sp. M4 | 30 | 49(10 d) | [ | |
Lactobacillus reuteri WQ-Y1 | 4 | 65(1 d) | [ | |
Paraclostridium sp. | 5 | 74(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 67.7(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Panus tigrinus 577.79 | 10 | 60(14 d) | [ | |
Pleurotus ostreatus | 1.50 | 95.07(14 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 98.5(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 64.5(8 d) | [ | |
Trichoderma asperellum | 0.20 | 81(13 d) | [ | |
Trichoderma harzianum | 0.20 | 21(13 d) | [ | |
诺氟沙星Norfloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.11 | 85(28 d) | [ | |
Mycobacterium sp. | 100 | 75-98.4(7 d) | [ | |
Staphylococcus capraeNOR-36 | 5 | 92.6(10 d) | [ | |
Thermus thermophiles C419 | 5 | 63(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 51(10 d) | [ | |
Paraclostridium sp. | 5 | 60(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 68.9(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 85(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 96.4(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 73.2(8 d) | [ | |
Fusarium verticillioides MH045733 | 50 | 37.54(7 d) | [ | |
Fusarium solani MH045734 | 50 | 33.59(7 d) | [ | |
Aspergillus sydowii MH045735 | 50 | 15.67(7 d) | [ | |
Penicillium janthinellum MH045736 | 50 | 46.31(7 d) | [ | |
氧氟沙星Ofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 70(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 47(10 d) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Pseudomonas sp. F2 | 5 | 100 | [ | |
Labrys portucalensis F11 | 0.45 | 34.6(28 d) | [ | |
Rhodococcus sp. FP1 | 0.45 | 39.3(28 d) | [ | |
真菌Fungi | ||||
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Trichoderma asperellum | 0.20 | 44(13 d) | [ | |
Trichoderma harzianum | 0.20 | 32(13 d) | [ | |
恩诺沙星Enrofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 74(72 h) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Enterococcus faecalis BSFL-1 | 100 | 63.2(96 h) | [ | |
Proteus mirabilis BSFL-2 | 100 | 57.2(96 h) | [ | |
Enterococcus faecalis BSFL-3 | 100 | 65.9(96 h) | [ | |
真菌Fungi | ||||
Agrocybe praecox | —— | —— | [ | |
Coprinus macrocephalus | —— | —— | [ | |
Cyathus stercoreus | —— | —— | [ |
酶类型 Enzyme type | 来源 Microorganism | 可降解的氟喹诺酮类抗生素 Biodegradable fluoroquinolone antibiotics | 参考文献Reference |
---|---|---|---|
漆酶Laccase | Trametes versicolor | CIP,NOR | [ |
Pycnoporus sanguineus | CIP,NOR | [ | |
SilA | Streptomyces ipomoeae | CIP,NOR | [ |
Pleurotus eryngii | LEV | [ | |
Pleurotus florida | LEV | [ | |
Pleurotus sajor caju | LEV | [ | |
Trametes polyzona KU-RNW027 | CIP | [ | |
细胞色素P450酶 Cytochrome P450 enzyme | Lactobacillus reuteri WQ-Y1 | CIP,NOR,OFL,ENR | [ |
Paraclostridium sp. | CIP | [ | |
Trametes versicolor | CIP,NOR | [ | |
Pycnoporus chrysosporium | CIP,NOR | [ | |
硫酸盐还原菌(SRB)污泥 Sulfate reducing bacteria(SRB)sludge | CIP | [ | |
氨基糖苷乙酰化转移酶Aminoglycoside acetyltransferase | Enterobacteriaceae | CIP | [ |
Escherichia coli | -- | [ | |
锰过氧化物酶 Manganese peroxidase | Irpex lacteus | CIP,NIR,OFL | [ |
Trametes polyzona KU-RNW027 | CIP | [ | |
氯过氧化物酶Chlorperoxidase | Cadariomyces fumago | NOR | [ |
脱氢酶Dehydrogenase | Paraclostridium sp. | CIP | [ |
表2 降解氟喹诺酮类抗生素的酶
Table 2 Enzymes degrading fluoroquinolone antibiotics
酶类型 Enzyme type | 来源 Microorganism | 可降解的氟喹诺酮类抗生素 Biodegradable fluoroquinolone antibiotics | 参考文献Reference |
---|---|---|---|
漆酶Laccase | Trametes versicolor | CIP,NOR | [ |
Pycnoporus sanguineus | CIP,NOR | [ | |
SilA | Streptomyces ipomoeae | CIP,NOR | [ |
Pleurotus eryngii | LEV | [ | |
Pleurotus florida | LEV | [ | |
Pleurotus sajor caju | LEV | [ | |
Trametes polyzona KU-RNW027 | CIP | [ | |
细胞色素P450酶 Cytochrome P450 enzyme | Lactobacillus reuteri WQ-Y1 | CIP,NOR,OFL,ENR | [ |
Paraclostridium sp. | CIP | [ | |
Trametes versicolor | CIP,NOR | [ | |
Pycnoporus chrysosporium | CIP,NOR | [ | |
硫酸盐还原菌(SRB)污泥 Sulfate reducing bacteria(SRB)sludge | CIP | [ | |
氨基糖苷乙酰化转移酶Aminoglycoside acetyltransferase | Enterobacteriaceae | CIP | [ |
Escherichia coli | -- | [ | |
锰过氧化物酶 Manganese peroxidase | Irpex lacteus | CIP,NIR,OFL | [ |
Trametes polyzona KU-RNW027 | CIP | [ | |
氯过氧化物酶Chlorperoxidase | Cadariomyces fumago | NOR | [ |
脱氢酶Dehydrogenase | Paraclostridium sp. | CIP | [ |
[1] | 张灵巧. 喹诺酮类药物的作用机制及不良反应分析[J]. 健康之路, 2017, 16(10):114-115. |
Zhang LQ. Analysis of the mechanism of action and adverse reactions of quinolones[J]. Heal Way, 2017, 16(10):114-115. | |
[2] | 陈默. 氟喹诺酮类抗生素在鲤鱼体内的富集与代谢[D]. 大连: 大连理工大学, 2019. |
Chen M. Bioconcentration and metabolism of fluoroquinolones(FQs)in common carp(Cyprinus carpio)[D]. Dalian: Dalian University of Technology, 2019. | |
[3] | 贾晨, 高峰, 吕芳, 等. 底泥中氟喹诺酮类抗生素残留检测方法的研究进展[J]. 质量安全与检验检测, 2021, 31(5):56-58. |
Jia C, Gao F, Lyu F, et al. Research advances on detection of fluoroquinolones residues in sediment[J]. Qual Saf Insp Test, 2021, 31(5):56-58. | |
[4] | 张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展[J]. 环境科学与技术, 2019, 42(S1):77-84. |
Zhang J, Feng L, Tian J, et al. Distribution characteristics in the environment and research progress treatment technology of fluoroquinolone antibiotics[J]. Environ Sci Technol, 2019, 42(S1):77-84. | |
[5] | 沙乃庆, 李艳红. 氟喹诺酮类抗生素水污染现状及去除技术研究进展[J]. 工业水处理, 2021, 41(5):22-28. |
Sha NQ, Li YH. Current situation of water pollution and research progress treatment technology of fluoroquinolone antibiotics[J]. Ind Water Treat, 2021, 41(5):22-28. | |
[6] | 剧泽佳, 赵鑫宇, 陈慧, 等. 石家庄市水环境中喹诺酮类抗生素的空间分布特征与环境风险评估[J]. 环境科学学报, 2021, 41(12):4919-4931. |
Ju ZJ, Zhao XY, Chen H, et al. The characteristics of spatial distribution and environmental risk assessment for Quinolones antibiotics in the aquatic environment of Shijiazhuang City[J]. Acta Sci Circumstantiae, 2021, 41(12):4919-4931. | |
[7] | 蓝贤瑾, 刘益仁, 吕真真, 等. 氟喹诺酮类抗生素在我国农田土壤中残留及其风险研究进展[J]. 江西农业学报, 2019, 31(9):108-115. |
Lan XJ, Liu YR, Lv ZZ, et al. Research advance in residues and ecological risks of fluoroquinolone antibiotics in agricultural soil in China[J]. Acta Agric Jiangxi, 2019, 31(9):108-115. | |
[8] | 徐志华, 孟勇, 杨洪生, 等. 江苏典型养殖区斑点叉尾鮰中多种药物的残留与膳食暴露评估[J]. 中国渔业质量与标准, 2021, 11(5):1-8. |
Xu ZH, Meng Y, Yang HS, et al. Residues and dietary exposure assessment of multiple drugs in Ictalurus punctatus in typical aquaculture areas of Jiangsu[J]. Chin Fish Qual Stand, 2021, 11(5):1-8. | |
[9] |
Amorim CL, Moreira IS, Maia AS, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Appl Microbiol Biotechnol, 2014, 98(7):3181-3190.
doi: 10.1007/s00253-013-5333-8 URL |
[10] | 喻娇. 环丙沙星(CIP)降解菌群驯化及降解特性初步研究[D]. 广州: 暨南大学, 2017. |
Yu J. Domestication of CIP-degrading bacterial consortium and preliminary study on their degradation characteristics[D]. Guangzhou: Jinan University, 2017. | |
[11] |
Pan LJ, Li J, Li CX, et al. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. J Hazard Mater, 2018, 343:59-67.
doi: 10.1016/j.jhazmat.2017.09.009 URL |
[12] |
Nguyen LN, Nghiem LD, Oh S. Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge[J]. Chemosphere, 2018, 211:600-607.
doi: S0045-6535(18)31472-3 pmid: 30096573 |
[13] | Liyanage GY, Manage PM. Removal of Ciprofloxacin(CIP)by bacteria isolated from hospital effluent water and identification of degradation pathways[J]. Int J Med Pharm Drug Res, 2018, 2(3):37-47. |
[14] | 疏文慧. 氧氟沙星厌氧降解菌的富集筛选和降解特性研究[D]. 无锡: 江南大学, 2021. |
Shu WH. Enrichment and isolation of anaerobic ofloxacin degradation bacteria and their degradation characteristics[D]. Wuxi: Jiangnan University, 2021. | |
[15] |
Qu CX, Wu Z, Pan DD, et al. Characterization of Lactobacillus reuteri WQ-Y1 with the ciprofloxacin degradation ability[J]. Biotechnol Lett, 2021, 43(4):855-864.
doi: 10.1007/s10529-020-03068-9 URL |
[16] |
Fang HT, Oberoi AS, He ZQ, et al. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge:Optimization and mechanism[J]. Water Res, 2021, 191:116808.
doi: 10.1016/j.watres.2021.116808 URL |
[17] |
Parshikov IA, Heinze TM, Moody JD, et al. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin[J]. Appl Microbiol Biotechnol, 2001, 56(3/4):474-477.
doi: 10.1007/s002530100672 URL |
[18] |
Prieto A, Möder M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresour Technol, 2011, 102(23):10987-10995.
doi: 10.1016/j.biortech.2011.08.055 URL |
[19] |
Čvančarová M, Moeder M, Filipová A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi-Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere, 2015, 136:311-320.
doi: 10.1016/j.chemosphere.2014.12.012 pmid: 25592459 |
[20] |
Singh SK, Khajuria R, Kaur L. Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus[J]. 3 Biotech, 2017, 7(1):69.
doi: 10.1007/s13205-017-0684-y URL |
[21] |
Gao N, Liu CX, Xu QM, et al. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus[J]. Chemosphere, 2018, 195:146-155.
doi: 10.1016/j.chemosphere.2017.12.062 URL |
[22] |
Manasfi R, Chiron S, Montemurro N, et al. Biodegradation of fluoroquinolone antibiotics and the climbazole fungicide by Trichoderma species[J]. Environ Sci Pollut Res Int, 2020, 27(18):23331-23341.
doi: 10.1007/s11356-020-08442-8 URL |
[23] |
Adjei MD, Heinze TM, Deck J, et al. Transformation of the antibacterial agent norfloxacin by environmental mycobacteria[J]. Appl Environ Microbiol, 2006, 72(9):5790-5793.
doi: 10.1128/AEM.03032-05 URL |
[24] | 付泊明, 陈立伟, 蔡天明, 等. 诺氟沙星降解菌NOR-36的分离筛选及降解特性研究[J]. 环境科学学报, 2017, 37(2):576-584. |
Fu BM, Chen LW, Cai TM, et al. Isolation and characterization of norfloxacin-degrading bacterium strain NOR-36[J]. Acta Sci Circumstantiae, 2017, 37(2):576-584. | |
[25] | 王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018, 35(6):533-539. |
Wang QF, Zhu PL, Xia ZM, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. J Agric Resour Environ, 2018, 35(6):533-539. | |
[26] |
Li KJ, Xu AL, Wu DH, et al. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides[J]. Bioresour Technol, 2021, 328:124826.
doi: 10.1016/j.biortech.2021.124826 URL |
[27] |
Maia AS, Tiritan ME, Castro PML. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1[J]. Ecotoxicol Environ Saf, 2018, 155:144-151.
doi: 10.1016/j.ecoenv.2018.02.067 URL |
[28] | 梅瀚杰, 陈喜鸿, 胡文锋, 等. 一株降解恩诺沙星菌株的筛选鉴定及其降解条件的优化[J]. 食品工业科技, 2021, 42(5):105-112. |
Mei HJ, Chen XH, Hu WF, et al. Screening and identification of enrofloxacin degrading strain and optimization of its degradation conditions[J]. Sci Technol Food Ind, 2021, 42(5):105-112. | |
[29] |
Wetzstein HG, Schneider J, Karl W. Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites[J]. Appl Microbiol Biotechnol, 2006, 71(1):90-100.
pmid: 16328445 |
[30] |
Maia AS, Ribeiro AR, Amorim CL, et al. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2014, 1333:87-98.
doi: 10.1016/j.chroma.2014.01.069 pmid: 24548434 |
[31] |
Feng NX, Yu J, Xiang L, et al. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition[J]. Sci Total Environ, 2019, 665:41-51.
doi: 10.1016/j.scitotenv.2019.01.322 URL |
[32] |
Blánquez A, Guillén F, Rodríguez J, et al. The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae[J]. World J Microbiol Biotechnol, 2016, 32(3):52.
doi: 10.1007/s11274-016-2032-5 URL |
[33] |
Mathur P, Sanyal D, Dey P. The optimization of enzymatic oxidation of levofloxacin, a fluoroquinolone antibiotic for wastetwater treatment[J]. Biodegradation, 2021, 32(4):467-485.
doi: 10.1007/s10532-021-09946-x URL |
[34] |
Lueangjaroenkit P, Teerapatsakul C, Sakka K, et al. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system[J]. Mycobiology, 2019, 47(2):217-229.
doi: 10.1080/12298093.2019.1589900 pmid: 31448142 |
[35] |
Jia YY, Khanal SK, Shu HY, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria(SRB)sludge system:mechanism and pathways[J]. Water Res, 2018, 136:64-74.
doi: 10.1016/j.watres.2018.02.057 URL |
[36] |
Park CH, Robicsek A, Jacoby GA, et al. Prevalence in the United States of aac(6 ‘)- Ib - cr encoding a ciprofloxacin-modifying enzyme[J]. Antimicrob Agents Chemother, 2006, 50(11):3953-3955.
pmid: 16954321 |
[37] |
Ingram PR, Rogers BA, Sidjabat HE, et al. Co-selection may explain high rates of ciprofloxacin non-susceptible Escherichia coli from retail poultry reared without prior fluoroquinolone exposure[J]. J Med Microbiol, 2013, 62(Pt 11):1743-1746.
doi: 10.1099/jmm.0.062729-0 URL |
[38] |
Zhao RN, Li XH, Hu MC, et al. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge[J]. Bioprocess Biosyst Eng, 2017, 40(8):1261-1270.
doi: 10.1007/s00449-017-1786-y URL |
[39] |
Asgher M, Bhatti HN, Ashraf M, et al. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system[J]. Biodegradation, 2008, 19(6):771-783.
doi: 10.1007/s10532-008-9185-3 pmid: 18373237 |
[40] |
Reis AC, Kolvenbach BA, Nunes OC, et al. Biodegradation of antibiotics:the new resistance determinants - part II[J]. N Biotechnol, 2020, 54:13-27.
doi: 10.1016/j.nbt.2019.08.003 URL |
[41] |
Rusch M, Spielmeyer A, Zorn H, et al. Biotransformation of ciprofloxacin by Xylaria longipes:structure elucidation and residual antibacterial activity of metabolites[J]. Appl Microbiol Biotechnol, 2018, 102(19):8573-8584.
doi: 10.1007/s00253-018-9231-y URL |
[42] | 夏湘勤, 黄彩红, 席北斗, 等. 畜禽粪便中氟喹诺酮类抗生素的生物转化与机制研究进展[J]. 农业环境科学学报, 2019, 38(2):257-267. |
Xia XQ, Huang CH, Xi BD, et al. Review on biotransformation and mechanism of fluoroquinolone antibiotics from livestock manure[J]. J Agro Environ Sci, 2019, 38(2):257-267. | |
[43] |
Mathur P, Sanyal D, Callahan DL, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health[J]. Environ Pollut, 2021, 291:118233.
doi: 10.1016/j.envpol.2021.118233 URL |
[44] |
Liao XB, Li BX, Zou RS, et al. Biodegradation of antibiotic ciprofloxacin:pathways, influential factors, and bacterial community structure[J]. Environ Sci Pollut Res Int, 2016, 23(8):7911-7918.
doi: 10.1007/s11356-016-6054-1 URL |
[45] |
Kim DW, Heinze TM, Kim BS, et al. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant[J]. Appl Environ Microbiol, 2011, 77(17):6100-6108.
doi: 10.1128/AEM.00545-11 URL |
[46] |
Zhao CY, Ru SG, Cui PF, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L. :Ecotoxicity, biodegradation, and key driven genes[J]. Water Res, 2021, 202:117413.
doi: 10.1016/j.watres.2021.117413 URL |
[47] | Wang L, Qiang ZM, Li YG, et al. An insight into the removal of fluoroquinolones in activated sludge process:Sorption and biodegradation characteristics[J]. J Environ Sci(China), 2017, 56:263-271. |
[48] | 陈国鑫. 水产养殖水中抗生素的残留特性及其去除技术研究[D]. 广州: 广东工业大学, 2015. |
Chen GX. Study on residual characterization of antibiotics in aquaculture wastewater and its removal technology[D]. Guangzhou: Guangdong University of Technology, 2015. | |
[49] | 王亚军, 陈甜婧. 氟喹诺酮类抗生素在水环境中的去除研究综评[J]. 环境监测管理与技术, 2021, 33(5):1-5. |
Wang YJ, Chen TJ. Comprehensive review on the removal of fluoroquinolone antibiotics in water environment[J]. Adm Tech Environ Monit, 2021, 33(5):1-5. | |
[50] | 张全胜. 影响活性污泥法处理效果的因素[J]. 四川建材, 2021, 47(7):34-35. |
Zhang QS. Factors affecting the effect of activated sludge treatment[J]. Sichuan Build Mater, 2021, 47(7):34-35. | |
[51] | 公言飞, 刘鹏, 郅立鹏. 膜生物反应器(MBR)研究现状及发展趋势[J]. 中国资源综合利用, 2021, 39(3):90-93. |
Gong YF, Liu P, Zhi LP. Research status and development trend of membrane bioreactor(MBR)[J]. China Resour Compr Util, 2021, 39(3):90-93. | |
[52] |
Dorival-García N, Zafra-Gómez A, Navalón A, et al. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors[J]. Sci Total Environ, 2013, 442:317-328.
doi: 10.1016/j.scitotenv.2012.10.026 URL |
[53] |
Xu ZC, Song XY, Li Y, et al. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment[J]. Sci Total Environ, 2019, 684:23-30.
doi: 10.1016/j.scitotenv.2019.05.241 URL |
[54] | 覃宁波. 膜生物反应器污水处理技术的研究进展[J]. 大众科技, 2021, 23(6):13-15. |
Qin NB. Research progress of membrane bioreactor wastewater treatment technology[J]. Pop Sci Technol, 2021, 23(6):13-15. | |
[55] | 杨鑫, 赵国淼, 朱威宇, 等. 酸碱指示剂在工业微生物高通量筛选中的应用进展[J]. 发酵科技通讯, 2021, 50(4):223-227. |
Yang X, Zhao GM, Zhu WY, et al. Application progress of acid-base indicators in high-throughput screening of industrial microorganisms[J]. Bull Ferment Sci Technol, 2021, 50(4):223-227. | |
[56] | 黄佳城, 张瑷珲, 付友思, 等. 功能性菌群构建的研究进展[J]. 合成生物学, 2022, 3(1):155-167. |
Huang JC, Zhang AH, Fu YS, et al. Research progress in construction of functional microbial communities[J]. Synth Biol J, 2022, 3(1):155-167. | |
[57] | 黄慧. 四氢呋喃降解菌群的富集与重建及降解菌ZM07与非降解菌互作机制研究[D]. 杭州: 浙江大学, 2021. |
Huang H. Enrichment and reconstruction of tetrahydrofuran-degrading microbial culture and interactions between degrading bacterium ZM07 and non-degrading bacteria[D]. Hangzhou: Zhejiang University, 2021. | |
[58] | 徐昭勇, 胡海洋, 许平, 等. 人工合成微生物组的构建与应用[J]. 合成生物学, 2021, 2(2):181-193. |
Xu ZY, Hu HY, Xu P, et al. Development and application of synthetic microbiome[J]. Synth Biol J, 2021, 2(2):181-193. | |
[59] | 王肖. 复合MBR强化去除污水中残留抗生素的效果研究[D]. 南京: 东南大学, 2015. |
Wang X. Research on the enhanced removal of antibiotic residues in wastewater by new composite MBR[D]. Nanjing: Southeast University, 2015. | |
[60] |
Zhao X, Tian FW, Wang G, et al. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy[J]. FEMS Microbiol Ecol, 2012, 82(3):703-712.
doi: 10.1111/j.1574-6941.2012.01440.x pmid: 22757630 |
[61] |
Barnhill AE, Weeks KE, Xiong N, et al. Identification of multiresistant Salmonella isolates capable of subsisting on antibiotics[J]. Appl Environ Microbiol, 2010, 76(8):2678-2680.
doi: 10.1128/AEM.02516-09 URL |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[3] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[4] | 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. |
[5] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[6] | 沈聪, 刘爽, 王春霞, 严雪梅, 代金霞. 盐池采油区污染土壤石油降解菌的筛选鉴定及其降解特性[J]. 生物技术通报, 2021, 37(6): 127-135. |
[7] | 朱淑芳, EHENEDEN Iyobosa, 宁海军, 尚洁昊, 李武阳, 孟宪刚. 高效原油污染降解菌的筛选、鉴定及菌群的构建[J]. 生物技术通报, 2021, 37(4): 107-115. |
[8] | 丁丽, 曾萍, 成璐瑶, 宋永会, 胡丽娜. 一株α-苯乙胺的微生物降解菌的优选及其最佳生长条件研究[J]. 生物技术通报, 2021, 37(3): 65-74. |
[9] | 卫晓博, 侯颖, 程豪杰, 秦翠丽, 牛明福, 徐建强. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性及途径研究[J]. 生物技术通报, 2021, 37(10): 72-80. |
[10] | 胡笑峰, 张朵朵, 周云横, 卫亚红, 陈少林. 一株木质素降解菌的鉴定及其降解特性[J]. 生物技术通报, 2019, 35(9): 172-177. |
[11] | 孟建宇, 冀锦华, 贾丽娟, 郭慧琴, 陶羽, 冯福应. 基于三种碳源筛选低温纤维素降解菌及其复合系的降解能力分析[J]. 生物技术通报, 2019, 35(8): 77-84. |
[12] | 刘梦, 圆冷艳, 翟立翔, 何丽芳, 李师翁. 原核生物转录组研究的现状与进展[J]. 生物技术通报, 2019, 35(6): 164-171. |
[13] | 于慧娟, 郭夏丽. 秸秆降解菌的筛选及其纤维素降解性能的研究[J]. 生物技术通报, 2019, 35(2): 58-63. |
[14] | 黄曼曼 ,邓百万 ,王梦姣 ,陈文强 ,刘开辉 ,尹璐. 机油高效降解菌的筛选鉴定及降解特性的初步研究[J]. 生物技术通报, 2018, 34(6): 155-163. |
[15] | 吴学玲,吴晓燕,李交昆,申丽,余润兰,曾伟民. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018, 34(5): 172-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||