生物技术通报 ›› 2019, Vol. 35 ›› Issue (6): 164-171.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0070
刘梦, 圆冷艳, 翟立翔, 何丽芳, 李师翁
收稿日期:
2019-01-16
出版日期:
2019-06-26
发布日期:
2019-07-08
作者简介:
刘梦圆,女,硕士研究生,研究方向:环境微生物学;E-mail:lmy123827@163.com
基金资助:
LIU Meng-yuan, LENG Yan, ZHAI Li-xiang, HE LI-fang, LI Shi-weng
Received:
2019-01-16
Published:
2019-06-26
Online:
2019-07-08
摘要: 转录技术在原核生物转录组研究上的突破,已经显示出其在揭示原核生物生命过程的分子机制上独特的优势。对原核生物的转录组研究开始于致病菌,近年来,通过转录组学分析原核生物对污染物的降解机制已成为研究热点。通过多组学整合分析,对降解菌的代谢机理、作用机制及转录相关基因进行深入探究。综述了原核生物转录组研究的现状及进展,即介绍了响应重金属及芳香族化合物、石油烃等有机污染物的降解菌种类及其转录组特征;重点关注了致病菌的转录组研究,包括人类、动植物致病菌的种类、性质及其转录组特征;并对原核生物的转录组研究在未来的发展和应用进行了展望,旨在为原核生物在环境污染治理和致病菌引起的人类和动植物疾病的防控奠定重要理论基础。
刘梦, 圆冷艳, 翟立翔, 何丽芳, 李师翁. 原核生物转录组研究的现状与进展[J]. 生物技术通报, 2019, 35(6): 164-171.
LIU Meng-yuan, LENG Yan, ZHAI Li-xiang, HE LI-fang, LI Shi-weng. Current Status and Progress on Prokaryotic Transcriptome Study[J]. Biotechnology Bulletin, 2019, 35(6): 164-171.
[1] Piétu G, Eveno E, Sourysegurens B, et al.The genexpress image knowledge base of the human muscle transcriptome:a resource of structural, functional, and positional candidate genes for muscle physiology and pathologies[J]. Genome Research, 1999, 9(12):1313-1320. [2] Filiatrault MJ.Progress in prokaryotic transcriptomics[J]. Current Opinion in Microbiology, 2011, 14(5):579-586. [3] Roane TM, Pepper IL, Gentry TJ.Microorganisms and metal pollutants[J]. Environmental Microbiology, 2015:415-439. [4] Wenjing L, Yanan W, Chuanyong J.Transcriptome analysis of silver, palladium, and selenium stresses in Pantoea sp. IMH[J]. Chemosphere, 2018, 208:50-58. [5] Zhang X, Wu W, Virgo N, et al.Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01[J]. Ecotoxicology, 2014, 23(8):1534-1545. [6] Chourey K, Thompson MR, Morrell-Falvey J, et al.Global molecular and morphological effects of 24-hour chromium(VI)exposure on Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2006, 72(9):6331-6344. [7] Dávila Costa JS, Kothe E, Abate CM, et al.Unraveling the Amycolatopsis tucumanensis copper-resistome[J]. Biometals, 2012, 25(5):905-917. [8] Clauss-Lendzian E, Vaishampayan A, De JA, et al.Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating[J]. Microbiological Research, 2018, 207:53-64. [9] Saulou-Bérion C, Ignacio G, Brice E, et al.Escherichia coli under ionic silver stress:an integrative approach to explore transcriptional, physiological and biochemical responses[J]. PLoS One, 2015, 10(12):e0145748. [10] Begoña Águila-Clares, Castiblanco LF, José Manuel Quesada, et al.Transcriptional response of Erwinia amylovora upon copper shock:in vivo role of the copA gene[J]. Molecular Plant Pathology, 2017, 19(1):169-179. [11] Gault M, Effantin G, Rodrigue A.Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12[J]. Free Radical Biology and Medicine, 2016, 97:351-361. [12] Vannini A, Pinatel E, Costantini PE, et al.Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses[J]. Scientific Reports, 2017, 7:45458. [13] Gu W, Semrau JD.Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b[J]. Applied Microbiology & Biotechnology, 2017, 101(23-24):8499-8516. [14] Marcus SA, Sidiropoulos SW, Steinberg H, et al.CsoR is essential for maintaining copper homeostasis in Mycobacterium tuberculosis[J]. PLoS One, 2016, 11(3):e0151816. [15] Larsen Ø, Karlsen OA .Transcriptomic profiling of Methylococcus capsulatus(Bath)during growth with two different methane monooxygenases[J]. Microbiologyopen, 2016, 5(2):254-267. [16] Quintana J, Novoaaponte L, Argüello JM.Copper homeostasis networks in the bacterium Pseudomonas aeruginosa[J]. Journal of Biological Chemistry, 2017, 292(38):15691-15704. [17] Zhang H, Ma Y, Liu P, et al.Multidrug resistance operon emrAB contributes for chromate and ampicillin co-resistance in a Staphylococcus strain isolated from refinery polluted river bank[J]. Springerplus, 2016, 5(1):1648-1659. [18] Irfan M, Sulman S, Kuipers OP, et al.Ni2+ dependent and psaR mediated regulation of the virulence genes pcpA, psaBCA, and prtA in Streptococcus pneumoniae[J]. PLoS One, 2015, 10(11):e0142839. [19] Chen Y, Huang C, Bai C, et al.Benzo[α]pyrene repressed DNA mismatch repair in human breast cancer cells[J]. Toxicology, 2013, 304:167-172. [20] Brändli RC, Bucheli TD, Ammann S, et al.Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network[J]. Journal of Environmental Monitoring, 2008, 10(11):1278-1286. [21] Nguyen VD, Wolf C, Mäder U, et al.Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis[J]. Proteomics, 2007, 7(9):1391-1408. [22] Atago Y, Shimodaira J, Araki N, et al.Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1[J]. Journal of the Agricultural Chemical Society of Japan, 2016, 80(5):1012-1019. [23] Brune I, Becker A, Paarmann D, et al.Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol, the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression[J]. Journal of Biotechnology, 2006, 127(1):21-33. [24] Cheng Y, Zang H, Wang H, et al.Global transcriptomic analysis of, Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl[J]. Ecotoxicology and Environmental Safety, 2018, 157:111-120. [25] Das N, Chandran P.Microbial degradation of petroleum hydrocarbon contaminants:An overview[J]. Biotechnology Research International, 2010, 2011(1):1-13. [26] Wu XL, Yu SL, Gu J, et al.Filomicrobium insigne sp. nov. isolated from an oil-polluted saline soil[J]. International Journal of Systematic & Evolutionary Microbiology, 2009, 59(2):300-305. [27] Van Beilen JB, Funhoff EG.Alkane hydroxylases involved in microbial alkane degradation[J]. Applied Microbiology & Biotechnology, 2007, 74(1):13-21. [28] Kothari A, Charrier M, Wu YW, et al. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization[J]. FEMS Microbiology Letters, 2016, 363(20):fnw224. [29] Jung J, Jang IA, Ahn S, et al.Molecular mechanisms of enhanced bacterial growth on hexadecane with red clay[J]. Microbial Ecology, 2015, 70(4):912-921. [30] Hong YH, Deng MC, Xu XM, et al.Characterization of the transcriptome of Achromobacter sp. HZ01 with the outstanding hydrocarbon-degrading ability[J]. Gene, 2016, 584(2):185-194. [31] Scoma A, Barbato M, Hernandez-Sanabria E, et al.Microbial oil-degradation under mild hydrostatic pressure(10 MPa):which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?[J]. Scientific Reports, 2016, 6:23526. [32] Jin HM, Jeong HI, Kim KH, et al.Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment[J]. Scientific Reports, 2016, 6(1):21796. [33] Cruz A, Rodrigues R, Pinheiro M, et al.Transcriptomes analysis of Aeromonas molluscorum Av27 cells exposed to tributyltin(TBT):Unravelling the effects from the molecular level to the organism[J]. Marine Environmental Research, 2015, 109:132-139. [34] Scheublin TR, Deusch S, Morenoforero SK, et al.Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere:induction of pollutant degradation genes by natural plant phenolic compounds[J]. Environmental Microbiology, 2014, 16(7):2212-2225. [35] Kun W, Hua Y, Hui P, et al.Bioremediation of triphenyl phosphate in river water microcosms:Proteome alteration of Brevibacillus brevis and cytotoxicity assessments[J]. Science of The Total Environment, 2019, 649:563-570. [36] Patrauchan MA, Parnell JJ, Mcleod MP, et al.Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400[J]. Archives of Microbiology, 2011, 193(9):641-650. [37] Peng X, Yamamoto S, Alain A.Vertès, et al. Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfito bacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(2):255-268. [38] Johnson DR, Nemir A, Andersen GL, et al.Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenesstrain 195[J]. FEMS Microbiology Letters, 2010, 294(2):198-206. [39] Johnson DR, Brodie EL, Hubbard AE, et al.Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase[J]. Applied & Environmental Microbiology, 2008, 74(9):2864-2872. [40] Lee J, Hiibel SR, Reardon KF, et al.Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene[J]. J Appl Microbiol, 2010, 108(6):2088-2102. [41] Hristova KR, Schmidt R, Chakicherla AY, et al.Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol[J]. Applied & Environmental Microbiology, 2007, 73(22):7347-7357. [42] Fida TT, Moreno-Forero SK, Breugelmans P, et al.Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil[J]. Environmental Science & Technology, 2017, 51(3):1570-1579. [43] Guan X, Liu F, Wang J, et al.Mechanism of 1, 4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2018, 77(1):123-133. [44] Chen Q, Tu H, Luo X, et al.The regulation of para-nitrophenol degradation in Pseudomonas putida DLL-E4[J]. PLoS One, 2016, 11(5):e0155485. [45] Dubey SK, Tokashiki T, Suzuki S.Microarray-mediated transcriptome analysis of the tributyltin(TBT)-resistant bacterium Pseudomonas aeruginosa 25W in the presence of TBT[J]. Journal of Microbiology, 2006, 44(2):200-205. [46] Muller JF, Stevens AM, Craig J, et al.Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress[J]. Applied & Environmental Microbiology, 2007, 73(14):4550-4558. [47] Yang X, Xi J.Transcriptomic and benzoate metabolic pathways of Rhodococcus sp. R04 cultured in biphenyl[J]. Acta Microbiologica Sinica, 2015, 55(7):851-862. [48] Edmilson R. Gonçalves, Hara H, Miyazawa D, et al. Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1[J]. Applied & Environmental Microbiology, 2006, 72(9):6183-6193. [49] Sharp JO, Sales CM, Leblanc JC, et al.An inducible propane monooxygenase is responsible for n-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1[J]. Applied and Environmental Microbiology, 2007, 73(21):6930-6938. [50] Benli C, Tsoi TV, Shoko I, et al.Sphingomonas wittichii strain RW1 genome-wide gene expression shifts in response to dioxins and clay[J]. PLoS One, 2016, 11(6):e0157008. [51] Morenoforero SK, Meer JRVD.Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand[J]. Isme Journal, 2014, 9(1):150-165. [52] Benjak A, Uplekar S, Zhang M, et al.Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b[J]. Bmc Genomics, 2016, 17(1):190-204. [53] Lin L, Dai X, Ying W, et al.RNA-seq-based analysis of drug-resistant Salmonella enterica serovar Typhimurium selected in vivo and in vitro[J]. PLoS One, 2017, 12(4):e0175234. [54] 李贵阳, 莫照兰, 李杰. 海水病原鳗弧菌M3体外转录表达分析[C]中国水产学会鱼病专业委员会2013年学术研讨会论文摘要汇编. 2013. [55] Hingston P, Chen J, Allen K, et al.Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes[J]. PLoS One, 2017, 12(6):e0180123. [56] Willig CJ, Duan K, Zhang ZJ.Transcriptome profiling of plant genes in response to Agrobacterium tumefaciens-mediated transformation[J]. 2018, 418:319-348. [57] Carlson PE, Bourgis AET, Hagan AK, et al. Global gene expression by Bacillus anthracis during growth in mammalian blood[J]. Pathogens and Disease, 2015, 73(8):ftv061. [58] Manuel W, Tobias B, Gaspar AH, et al.Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation[J]. BMC Genomics, 2018, 19(1):82-99. [59] Kathleen N, Ryan MC, Matthew M, et al.Transcriptome Analysis of Neisseria gonorrhoeae during natural infection reveals differential expression of antibiotic resistance determinants between men and women[J]. Msphere, 2018, 3(3):e00312-e00318. [60] Cruz-Rabadán JS, Miranda-Ríos J, Espín-Ocampo G, et al.Non-coding RNAs are differentially expressed by nocardia brasiliensis in vitro and in experimental actinomycetoma[J]. Open Microbiology Journal, 2017, 11:112-125. [61] Machuca A, Martinez V.Transcriptome analysis of the intracellular facultative pathogen Piscirickettsia salmonis:expression of putative groups of genes associated with virulence and iron metabolism[J]. PLoS One, 2016, 11(12):e0168855. [62] Marrer E, Satoh AT, Johnson MM, et al.Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin[J]. Antimicrobial Agents & Chemotherapy, 2006, 50(1):269-278. [63] 马月姣. 酸耐受副溶血性弧菌生物学特性及转录组、蛋白组分析[D]. 上海:上海海洋大学, 2016. [64] Sánchez J, Holmgren J.Cholera toxin structure, gene regulation and pathophysiological and immunological aspects[J]. Cellular & Molecular Life Sciences, 2008, 65(9):1347-1360. [65] 陈保立. 霍乱弧菌活的非可培养状态的转录组及蛋白组研究[D]. 北京:中国疾病预防控制中心, 2013. [66] Chen X, Sun C, Laborda P, et al.Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae[J]. Frontiers in Microbiology, 2018, 9:2280. |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[3] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[4] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[5] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[6] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[7] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[8] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[9] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[10] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[11] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[12] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[13] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[14] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[15] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||