[1] |
Chen LZ, Li W, Katin-Grazzini L, et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants[J]. Hortic Res, 2018, 5:13.
doi: 10.1038/s41438-018-0023-4
URL
|
[2] |
Iaffaldano B, Zhang YX, Cornish K. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection[J]. Ind Crops Prod, 2016, 89:356-362.
doi: 10.1016/j.indcrop.2016.05.029
URL
|
[3] |
Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat Biotechnol, 2015, 33(11):1162-1164.
doi: 10.1038/nbt.3389
pmid: 26479191
|
[4] |
Murovec J, Guček K, Bohanec B, et al. DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes[J]. Front Plant Sci, 2018, 9:1594.
doi: 10.3389/fpls.2018.01594
pmid: 30455712
|
[5] |
Park J, Choe S. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants[J]. Transgenic Res, 2019, 28(Suppl 2):61-64.
doi: 10.1007/s11248-019-00136-3
pmid: 31321685
|
[6] |
Gerszberg A. Tissue culture and genetic transformation of cabbage(Brassica oleracea var. capitata):an overview[J]. Planta, 2018, 248(5):1037-1048.
doi: 10.1007/s00425-018-2961-3
pmid: 30066219
|
[7] |
Qing CM, Fan L, Lei Y, et al. Transformation of pakchoi(Brassica rapa L. ssp. chinensis)by Agrobacterium infiltration[J]. Mol Breed, 2000, 6(1):67-72.
doi: 10.1023/A:1009658128964
URL
|
[8] |
侯喜林, 李英, 黄菲艺. 不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展[J]. 园艺学报, 2020, 47(9):1663-1677.
|
|
Hou XL, Li Y, Huang FY. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage(Brassica campestris ssp. chinensis)[J]. Acta Hortic Sin, 2020, 47(9):1663-1677.
|
[9] |
Sivanandhan G, Moon J, Sung C, et al. L-cysteine increases the transformation efficiency of Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. Front Plant Sci, 2021, 12:767140.
doi: 10.3389/fpls.2021.767140
URL
|
[10] |
张广辉, 巩振辉, 薛万新, 等. 大白菜和油菜真空渗入遗传转化法初报[J]. 西北农业大学学报, 1998(4):1-4.
|
|
Zhang GH, Gong ZH, Xue WX, et al. Vacuum infiltration genetic transformation method in Chinese cabbage and rape[J]. J Northwest Agric Univ, 1998(4):1-4.
|
[11] |
Liu F, Cao MQ, Yao L, et al. In planta transformation of pakchoi(Brassica campestris L. ssp. chinensis)by infiltration of adult plants with Agrobacterium[J]. Acta Hortic, 1998(467):187-192.
|
[12] |
严继勇. BcpLH反义基因在大白菜中的转化及其功能的研究[D]. 杭州: 浙江大学, 2004.
|
|
Yan JY. Studies on the function of BcpLH and transformation of its antisense gene into Chinese cabbage-pe-tsai(Brassica campestris L.)[D]. Hangzhou: Zhejiang University, 2004.
|
[13] |
付绍红. floral-dip法转化甘蓝型油菜有关影响因素研究[D]. 雅安: 四川农业大学, 2005.
|
|
Fu SH. A study on the related factors influencing transformation of Brassica napus by floral-dip[D]. Ya'an: Sichuan Agricultural University, 2005.
|
[14] |
Xu HJ, Wang XF, Zhao H, et al. An intensive understanding of vacuum infiltration transformation of pakchoi(Brassica rapa ssp. chinensis)[J]. Plant Cell Rep, 2008, 27(8):1369-1376.
doi: 10.1007/s00299-008-0564-3
URL
|
[15] |
He YK, Bai JJ, Wu FJ, et al. In planta transformation of Brassica rapa and B. napus via vernalization-infiltration methods[J]. Protocol exchange, 2013. DOI:10.1038/protex.2013.067.
doi: 10.1038/protex.2013.067
|
[16] |
Chen GH, Zeng FL, Wang J, et al. Transgenic Wucai(Brassica campestris L.)produced via Agrobacterium-mediated anther transformation in planta[J]. Plant Cell Rep, 2019, 38(5):577-586.
doi: 10.1007/s00299-019-02387-0
URL
|
[17] |
Hu D, Bent AF, Hou XL, et al. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa[J]. BMC Plant Biol, 2019, 19(1):246.
doi: 10.1186/s12870-019-1843-6
URL
|
[18] |
Xiong XP, Liu WM, Jiang JX, et al. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system[J]. Mol Genet Genomics, 2019, 294(5):1251-1261.
doi: 10.1007/s00438-019-01564-w
URL
|
[19] |
Chen YY, Wang ZP, Ni HW, et al. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J]. Sci China Life Sci, 2017, 60(5):520-523.
doi: 10.1007/s11427-017-9021-5
URL
|
[20] |
Tian SW, Jiang LJ, Gao Q, et al. Efficient CRISPR/Cas9-based gene knockout in watermelon[J]. Plant Cell Rep, 2017, 36(3):399-406.
doi: 10.1007/s00299-016-2089-5
pmid: 27995308
|