生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 286-294.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0216
蒋旭东(), 刘宇, 邬建飞, 胡双阁, 卢建远, 字向东()
收稿日期:
2022-02-21
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
蒋旭东,男,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail:基金资助:
JIANG Xu-dong(), LIU Yu, WU Jian-fei, HU Shuang-ge, LU Jian-yuan, ZI Xiang-dong()
Received:
2022-02-21
Published:
2022-11-26
Online:
2022-12-01
摘要:
旨在克隆获得牦牛纤维蛋白原γ链(FGG)基因,明确其在组织中的表达特性,探讨FGG对母牦牛繁殖的影响。采集母牦牛的心、肝、脾、肺、卵巢、输卵管和子宫等组织样以及颗粒细胞,利用RT-PCR克隆FGG基因并利用RT-qPCR和免疫组化检测其组织表达。获得到牦牛FGG基因cDNA序列,编码区全长1 332 bp,编码443个氨基酸,FGG蛋白属于酸性亲水稳定蛋白。FGG基因核苷酸序列进化树显示牦牛先与黄牛聚为一类。RT-qPCR显示FGG基因在检测的7个组织均有表达,肝脏表达量最高,显著高于其他组织(P<0.05);在卵泡不同发育阶段的颗粒细胞中均有表达,且大卵泡颗粒细胞表达量最高,显著高于其他发育阶段(P<0.05);妊娠期卵巢和子宫中表达量显著高于空怀期(P<0.05)。IHC显示FGG蛋白主要在卵巢颗粒细胞、卵泡腔、输卵管黏膜和子宫内膜中表达。牦牛FGG基因在物种间具有较高的保守性,组织表达广泛,可能在牦牛繁殖调控中发挥着重要作用。
蒋旭东, 刘宇, 邬建飞, 胡双阁, 卢建远, 字向东. 牦牛FGG组织表达与雌性生殖器官中定位分析[J]. 生物技术通报, 2022, 38(11): 286-294.
JIANG Xu-dong, LIU Yu, WU Jian-fei, HU Shuang-ge, LU Jian-yuan, ZI Xiang-dong. Tissue Expression and Localization Anaysis of FGG in Female Reproductive Organs of Bos grunniens[J]. Biotechnology Bulletin, 2022, 38(11): 286-294.
基因Gene | 引物序列Primer sequence(5'-3') | 扩增产物长度Amplified product size/bp | 用途Usage | 退火温度Annealing temperature /℃ |
---|---|---|---|---|
FGG | F:ACACCATAGTTGGTCCTCG R:GAATGAACAGCTCAGGGCAAA | 1 363 | 克隆 | 59 |
FGG | F:CAGGTAGTATCGGTTGGTGG R:CCATGTGGCCCAAATAATGCC | 132 | RT-qPCR | 60 |
GAPDH | F:TGTTGGGATCTGACCTGCC R:AAGTCGCAGGAGACAACCTG | 135 | RT-qPCR | 60 |
表1 PCR和荧光定量PCR引物序列
Table 1 Primer sequences for PCR and real-time quantitative PCR
基因Gene | 引物序列Primer sequence(5'-3') | 扩增产物长度Amplified product size/bp | 用途Usage | 退火温度Annealing temperature /℃ |
---|---|---|---|---|
FGG | F:ACACCATAGTTGGTCCTCG R:GAATGAACAGCTCAGGGCAAA | 1 363 | 克隆 | 59 |
FGG | F:CAGGTAGTATCGGTTGGTGG R:CCATGTGGCCCAAATAATGCC | 132 | RT-qPCR | 60 |
GAPDH | F:TGTTGGGATCTGACCTGCC R:AAGTCGCAGGAGACAACCTG | 135 | RT-qPCR | 60 |
图1 牦牛FGG基因的PCR扩增结果 M:DL2000 DNA maker;1和2:FGG引物PCR扩增产物
Fig. 1 PCR amplification result of yak FGG gene M:DL2000 DNA maker;1 and 2:PCR amplification products of FGG primers
图2 牦牛和其他物种间FGG氨基酸序列比对 黑色:同源性=100%;灰色:同源性>50%;白色:同源性<50%
Fig. 2 Alignment of amino acid sequence of FGG between yak(B. grunniens)and other species Black:Homology=100%. Gray:Homology>50%. White:Homology<50%
图3 牦牛FGG蛋白二级结构预测 h:α-螺旋;e:延伸链;t:β-转角;c:无规卷曲
Fig. 3 Secondary structure prediction of yak FGG protein h:α-helix. e:Extended chain. t:β-turn. c:Random coil
图6 空怀母牦牛FGG基因在不同组织的相对表达水平 不同小写字母表示差异显著(P<0.05),字母相同表示差异不显著。下同
Fig. 6 Expressions of FGG gene in different tissues of non-pregnant female yak The different lowercase letters indicate that the difference is significant(P<0.05).The same below
图7 空怀母牦牛FGG基因在不同发育阶段卵泡颗粒细胞的表达水平
Fig. 7 Expressions of FGG gene in follicular granulosa cells of non-pregnant female yak at different developmen-tal stages
图9 FGG蛋白在母牦牛生殖器官中的定位 A、B、D、F:FGG组;C、E、G:阴性对照;A、B、C:卵巢;D、E:输卵管;F、G:子宫;a:卵母细;b:颗粒细胞;c:基膜;e:初级卵泡;f:卵泡腔;g:黏膜上皮;h:子宫内膜;k:腺上皮;j:基质细胞
Fig. 9 Location of FGG protein in the reproductive organs of female yak A,B,D,F:FGG group;C,E,G:negative control. A,B,C:Ovary;D,E:oviduct;F,G:Uterus. a:Oocytes;b:granulosa cells;c:basement membrane;e:primary follicles;f:follicular cavity;g:mucosal epithelium;h:endometrium;k:glandular epithelium;j:stromal cells
[1] |
Weisel JW. Fibrinogen and fibrin[J]. Adv Protein Chem, 2005, 70:247-299.
pmid: 15837518 |
[2] |
Chung DW, Rixon MW, Que BG, et al. Cloning of fibrinogen genes and their cDNA[J]. Ann N Y Acad Sci, 1983, 408:449-456.
doi: 10.1111/j.1749-6632.1983.tb23265.x URL |
[3] |
Kant JA, Fornace AJ, Saxe D, et al. Evolution and organization of the fibrinogen locus on chromosome 4:gene duplication accompanied by transposition and inversion[J]. Proc Natl Acad Sci USA, 1985, 82(8):2344-2348.
doi: 10.1073/pnas.82.8.2344 URL |
[4] |
Coden ME, Loffredo LF, Walker MT, et al. Fibrinogen is a specific trigger for cytolytic eosinophil degranulation[J]. J Immunol, 2020, 204(2):438-448.
doi: 10.4049/jimmunol.1900932 pmid: 31818982 |
[5] |
Parrott JA, Whaley PD, Skinner MK. Extrahepatic expression of fibrinogen by granulosa cells:potential role in ovulation[J]. Endocrinology, 1993, 133(4):1645-1649.
pmid: 8404605 |
[6] |
Galanakis D, Nuovo G, Spitzer S, et al. Fibrinogen mRNA and antigen co-present in human trophoblasts in situ:possible implications[J]. Thromb Res, 1996, 81(2):263-269.
pmid: 8822141 |
[7] | 黄愉淋, 黄德伦, 等. 水牛卵泡液差异蛋白质双向电泳方法的建立及质谱分析[J]. 畜牧兽医学报, 2013, 44(8):1244-1250. |
Huang YL, Huang DL, Guan JL, et al. Establishment of two dimensional electrophoresis method and mass spectrumetry analysis of the differential proteins of buffalo follicular fluid[J]. Chin J Animal Vet Sci, 2013, 44(8):1244-1250. | |
[8] |
Kobayashi T, Kanayama N, Tokunaga N, et al. Prenatal and peripartum management of congenital afibrinogenaemia[J]. Br J Haematol, 2000, 109(2):364-366.
doi: 10.1046/j.1365-2141.2000.01993.x URL |
[9] |
Aygören-Pürsün E, Martinez Saguer I, Rusicke E, et al. Retrochorionic hematoma in congenital afibrinogenemia:resolution with fibrinogen concentrate infusions[J]. Am J Hematol, 2007, 82(4):317-320.
pmid: 17034026 |
[10] |
Zhou WJ, Luo ML, Yan J, et al. A novel fibrinogen gamma-chain mutation, p. Cys165Arg, causes disruption of the γ165Cys-Bβ227Cys disulfide bond and ultimately leads to hypofibrinogenemia[J]. Thromb Res, 2018, 172:128-134.
doi: 10.1016/j.thromres.2018.10.018 URL |
[11] |
Yokoyama K, Zhang XP, et al. Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains[J]. Biochemistry, 1999, 38(18):5872-5877.
pmid: 10231539 |
[12] |
Yokoyama K, Erickson HP, Ikeda Y, et al. Identification of amino acid sequences in fibrinogen γ-chain and tenascin C C-terminal domains critical for binding to integrin αvβ3[J]. J Biol Chem, 2000, 275(22):16891-16898.
doi: 10.1074/jbc.M000610200 pmid: 10747940 |
[13] |
Kaido T, Yoda M, Kamijo T, et al. Heterozygous variant fibrinogen γA289V(Kanazawa III)was confirmed as hypodysfibrinogenemia by plasma and recombinant fibrinogens[J]. Int J Lab Hematol, 2020, 42(2):190-197.
doi: 10.1111/ijlh.13152 URL |
[14] | 王甜甜, 邵静茹, 王杰, 等. 新型FGG基因突变导致遗传性纤维蛋白原缺陷症的研究[J]. 中国实验血液学杂志, 2021, 29(2):586-590. |
Wang TT, Shao JR, Wang J, et al. Congenital fibrinogen deficiency caused by novel FGG gene mutation[J]. J Exp Hematol, 2021, 29(2):586-590. | |
[15] |
Lecce L, Kaneko Y, Madawala RJ, et al. ICAM1 and fibrinogen-γ are increased in uterine epithelial cells at the time of implantation in rats[J]. Mol Reprod Dev, 2011, 78(5):318-327.
doi: 10.1002/mrd.21307 pmid: 21448983 |
[16] |
Zi XD. Reproduction in female yaks(Bos grunniens)and opportunities for improvement[J]. Theriogenology, 2003, 59(5/6):1303-1312.
doi: 10.1016/S0093-691X(02)01172-X URL |
[17] |
Qiu Q, Zhang GJ, Ma T, et al. The yak genome and adaptation to life at high altitude[J]. Nat Genet, 2012, 44(8):946-949.
doi: 10.1038/ng.2343 pmid: 22751099 |
[18] |
Zhang X, Wang F, Huang YB, et al. FGG promotes migration and invasion in hepatocellular carcinoma cells through activating epithelial to mesenchymal transition[J]. Cancer Manag Res, 2019, 11:1653-1665.
doi: 10.2147/CMAR.S188248 pmid: 30863175 |
[19] |
Yoda M, Kaido T, Kamijo T, et al. Novel variant fibrinogen γp. C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment[J]. Int J Hematol, 2021, 114(3):325-333.
doi: 10.1007/s12185-021-03174-y URL |
[20] |
Yee VC, Pratt KP, Côté HC, et al. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen[J]. Structure, 1997, 5(1):125-138.
pmid: 9016719 |
[21] |
Ichijo H, Rönnstrand L, et al. Purification of transforming growth factor-beta 1 binding proteins from porcine uterus membranes[J]. J Biol Chem, 1991, 266(33):22459-22464.
pmid: 1657997 |
[22] |
Lee YM, Leiby KR, Allar J, et al. Primary structure of bovine conglutinin, a member of the C-type animal lectin family[J]. J Biol Chem, 1991, 266(5):2715-2723.
pmid: 1993651 |
[23] | Zuliani-Alvarez L, Midwood KS. Fibrinogen-related proteins in tissue repair:how a unique domain with a common structure controls diverse aspects of wound healing[J]. Adv Wound Care(New Rochelle), 2015, 4(5):273-285. |
[24] |
Simpson-Haidaris PJ, Wright TW, et al. Cloning and characterization of a lung-specific cDNA corresponding to the gamma chain of hepatic fibrinogen[J]. Gene, 1995, 167(1/2):273-278.
doi: 10.1016/0378-1119(95)00679-6 URL |
[25] | 刘宏军, 顾建军, 高君吟, 等. FGG与FGA在吸烟所致COPD中的表达及意义[J]. 中国病理生理杂志, 2021, 37(10):1868-1875. |
Liu HJ, Gu JJ, Gao JY, et al. Expression and significance of FGG and FGA in smoke-induced COPD[J]. Chin J Pathophysiol, 2021, 37(10):1868-1875. | |
[26] |
Wangh LJ, Holland LJ, Spolski RJ, et al. Xenopus fibrinogen. characterization of subunits and hormonal regulation of biosynthesis[J]. J Biol Chem, 1983, 258(7):4599-4605.
pmid: 6833268 |
[27] |
Iwaki T, Castellino FJ. Maternal fibrinogen is necessary for embryonic development[J]. Curr Drug Targets, 2005, 6(5):535-539.
pmid: 16026273 |
[28] | Grant DM, Macedo A, et al. Fibrinogen in equine pregnancy as a mediator of cell adhesion, an epigenetic and functional investigation[J]. Biol Reprod, 2019, 102(1):170-184. |
[29] |
Harris EA, Stephens KK, et al. Extracellular vesicles and the oviduct function[J]. Int J Mol Sci, 2020, 21(21):8280.
doi: 10.3390/ijms21218280 URL |
[1] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[2] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[3] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[4] | 穆德添, 万凌云, 章瑶, 韦树根, 陆英, 付金娥, 田艺, 潘丽梅, 唐其. 钩藤管家基因筛选及生物碱合成相关基因的表达分析[J]. 生物技术通报, 2023, 39(2): 126-138. |
[5] | 曹英芳, 赵新, 刘双, 李瑞环, 刘娜, 徐石勇, 高芳瑞, 马卉, 兰青阔, 檀建新, 王永. 抗除草剂大豆GE-J12实时荧光定量PCR检测方法的建立[J]. 生物技术通报, 2022, 38(7): 146-152. |
[6] | 王楠, 张瑞, 潘阳阳, 何翃宏, 王靖雷, 崔燕, 余四九. 牦牛TGF-β1基因克隆及在雌性生殖系统主要器官中的表达定位[J]. 生物技术通报, 2022, 38(6): 279-290. |
[7] | 粟元, 朱龙佼, 曹继娟, 刘建龙, 许文涛. 基于大肠埃希菌 O157∶H7的荧光定量冻干检测试剂盒的研制[J]. 生物技术通报, 2022, 38(3): 264-275. |
[8] | 党瑗, 李维, 苗向, 修宇, 林善枝. 山杏油体蛋白基因PsOLE4克隆及其调控油脂累积功能分析[J]. 生物技术通报, 2022, 38(11): 151-161. |
[9] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
[10] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[11] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[12] | 张浩, 张亚楠, 李鑫, 王佳美, 王永, 朱江江, 熊燕, 林亚秋. PDK4对山羊肌内脂肪细胞脂代谢的影响[J]. 生物技术通报, 2021, 37(12): 151-159. |
[13] | 王欢禹, 常昊宛, 章崇祺, 金卫林, 魏芳. 五种检测嵌合抗原受体表达方法的比较[J]. 生物技术通报, 2021, 37(12): 265-273. |
[14] | 丰敏, 李舒婷, 张洋子, 粟元, 朱龙佼, 曹际娟, 刘海燕, 许文涛. 基于荧光自淬灭引物的沙门氏菌新型荧光定量PCR方法的开发[J]. 生物技术通报, 2021, 37(11): 285-292. |
[15] | 李恬静薇, 邹潇潇, 朱军, 鲍时翔. 长茎葡萄蕨藻胁迫条件下RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2021, 37(10): 266-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||