生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 116-125.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0551
收稿日期:
2022-05-05
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
赵孟良,男,博士,副研究员,研究方向:蔬菜遗传育种与分子生物学;E-mail: 基金资助:
ZHAO Meng-liang1,2(), GUO Yi-ting1, REN Yan-jing1,2()
Received:
2022-05-05
Published:
2023-02-26
Online:
2023-03-07
摘要:
菊芋属抗旱性物种,通过对菊芋转录组数据进行分析,筛选与菊芋响应干旱胁迫密切相关的WRKY转录因子基因,为明晰菊芋WRKY家族基因的功能奠定理论基础。采用生物信息学方法,对菊芋WRKY基因家族成员的理化性质、保守结构域、蛋白质三级结构及其与其他物种的系统进化关系进行分析,利用RT-qPCR方法检测干旱胁迫下,菊芋WRKY基因在种子、根、茎、叶、花瓣及块茎的相对表达量,以及菊芋WRKY基因家族成员的转录水平。结果表明,在菊芋叶片中共鉴定出74个WRKY基因,序列长度为510-2 040 bp,检测到的motif基序的长度为25-50个碱基,系统进化树分析显示,大部分HtWRKY基因能够与其他WRKY基因聚为一类;组织特异性表达分析结果显示,HtWRKY基因在花瓣和块茎的相对表达量较高,干旱诱导表达分析显示,分别有20个和19个HtWRKY基因在菊芋叶片和根中呈现出诱导后上升表达的趋势。HtWRKY参与了菊芋抵御干旱胁迫的过程。
赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125.
ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus[J]. Biotechnology Bulletin, 2023, 39(2): 116-125.
图4 HtWRKY基因在PEG-6000模拟干旱胁迫下的组织特异性表达水平热图 数字表示2-ΔΔCT值
Fig. 4 Tissue-specificity expression heatmap of HtWRKY genes under PEG-6000 -simulated drought stresses Number indicates 2-ΔΔCT value
图5 74个HtWRKY基因在PEG-6000模拟干旱胁迫下的菊芋叶片中的表达水平热图 数字表示log2PFKM值
Fig. 5 Expression heatmap of 74 HtWRKY genes under PEG-6000-simulated drought stress in H. tuberosus leaves Number indicates log2 PFKM value
[1] | Smekalova TN, Lebedeva NV, Novikova LY. Morphological analysis of Jerusalem artichoke(Helianthus tuberosus L.)accessions of different origin from VIR collection[J]. Proc Latv Acad Sci Sect B Nat Exact Appl Sci, 2019, 73(6): 502-512. |
[2] |
Baldini M, Danuso F, Turi M, et al. Evaluation of new clones of Jerusalem artichoke(Helianthus tuberosus L.)for inulin and sugar yield from stalks and tubers[J]. Ind Crops Prod, 2004, 19(1): 25-40.
doi: 10.1016/S0926-6690(03)00078-5 URL |
[3] | Favale S, Ciolfi G, Moretti S. Optimization of Bioethanol production from Jerusalem artichokes powder and fresh tubers[J]. Global Advanced Research Journals, 2014, 3(5): 72-77. |
[4] | Kiru S, Nasenko I. Use of genetic resources from Jerusalem artichoke collection of N. Vavilov institute in breeding for bioenergy and health security[J]. Agronomy Research, 2010, 8: 625-632. |
[5] |
Puttha R, Jogloy S, Suriharn B, et al. Variations in morphological and agronomic traits among Jerusalem artichoke(Helianthus tuberosusL.)accessions[J]. Genet Resour Crop Evol, 2013, 60(2): 731-746.
doi: 10.1007/s10722-012-9870-2 URL |
[6] |
Seiler GJ, Campbell LG. Genetic variability for mineral concentration in the forage of Jerusalem artichoke cultivars[J]. Euphytica, 2006, 150(1/2): 281-288.
doi: 10.1007/s10681-006-9119-2 URL |
[7] |
Zhao ML, Ren YJ, Wei W, et al. Metabolite analysis of Jerusalem artichoke(Helianthus tuberosus L.)seedlings in response to polyethylene glycol-simulated drought stress[J]. Int J Mol Sci, 2021, 22(7): 3294.
doi: 10.3390/ijms22073294 URL |
[8] | Viriyasuthee W, Jogloy S, Saksirirat W, et al. Biological control of Alternaria leaf spot caused by Alternaria spp. in Jerusalem artichoke(Helianthus tuberosus L.)under two fertilization regimes[J]. Plants(Basel), 2019, 8(11): 463. |
[9] |
Viriyasuthee W, Saksirirat W, Saepaisan S, et al. Variability of Alternaria leaf spot resistance in Jerusalem artichoke(Helianthus tuberosus L.)accessions grown in a humid tropical region[J]. Agronomy, 2019, 9(6): 268.
doi: 10.3390/agronomy9060268 URL |
[10] |
Zhao ML, Zhong QW, Tian MY, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber(Helianthus tuberosus L.)[J]. Ind Crops Prod, 2020, 151: 112455.
doi: 10.1016/j.indcrop.2020.112455 URL |
[11] | Breton C, Kiru SD, Bervillé A, et al. Breeding of Jerusalem artichoke with the desired traits for different directions of use: retrospective, approaches, and prospects(review)[J]. S-h Biol, 2017, 52(5): 940-951. |
[12] | Curt MD, Aguado PL, Sanz M, et al. On the use of the stalks of Helianthus tuberosus L. for bioethanol production[C]// 2005 AAIC Annual Meeting: International Conference on Industrial Crops and Rural Development, Spain, 2005. |
[13] |
Rawate PD, Hill RM. Extraction of a high-protein isolate from Jerusalem artichoke(Helianthus tuberosus)tops and evaluation of its nutrition potential[J]. J Agric Food Chem, 1985, 33(1): 29-31.
doi: 10.1021/jf00061a008 URL |
[14] |
Radovanovic A, Stojceska V, Plunkett A, et al. The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index[J]. Food Chem, 2015, 177: 81-88.
doi: 10.1016/j.foodchem.2014.12.096 pmid: 25660861 |
[15] |
Tiengtam N, Khempaka S, Paengkoum P, et al. Effects of inulin and Jerusalem artichoke(Helianthus tuberosus)as prebiotic ingredients in the diet of juvenile Nile tilapia(Oreochromis niloticus)[J]. Animal Feed Sci Technol, 2015, 207: 120-129.
doi: 10.1016/j.anifeedsci.2015.05.008 URL |
[16] |
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9 pmid: 10785665 |
[17] | 丁杰荣, 张静, 江立群, 等. OsWRKY67负向调控水稻耐旱性的功能分析[J/OL]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.s.20211209.1851.012.html. |
Ding JR, Zhang J, Jiang LQ, et al. Functional analysis of OsWRKY67 in negatively regulating drought-tolerance in rice[J/OL]. Mol Plant Breed, 2021. http://kns.cnki.net/kcms/detail/46.1068.s.20211209.1851.012.html. | |
[18] |
Choi C, Hwang SH, Fang IR, et al. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related(PR)10a promoter and confers reduced susceptibility to pathogens[J]. New Phytol, 2015, 208(3): 846-859.
doi: 10.1111/nph.13516 URL |
[19] |
Wang Z, Zhu Y, Wang LL, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230(6): 1155-1166.
doi: 10.1007/s00425-009-1014-3 pmid: 19760263 |
[20] | 张宇欣, 刘征, 张唐权, 等. 空心菜WRKY基因家族成员鉴定与表达分析[J/OL]. 分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220507.1738.028.html. |
Zhang YX, Liu Z, Zhang TQ, et al. Genome-wide identification and expression analysis of WRKY gene family in water spinach(Ipom-oea aquatica)[J/OL]. Mol Plant Breed, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220507.1738.028.html. | |
[21] | 潘鑫峰, 叶方婷, 毛志君, 等. 睡莲WRKY家族的全基因组鉴定和分子进化分析[J]. 园艺学报, 2022, 49(5): 1121-1135 |
Pan XF, Ye FT, Mao ZJ, et al. Genomic identification and molecular evolution of the WRKY family in Nymphaea colorata[J]. Acta Hortic Sin, 2022, 49(5): 1121-1135. | |
[22] |
Zhao H, Wang S, Chen S, et al. Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra[J]. Gene, 2015, 565(1): 130-139.
doi: 10.1016/j.gene.2015.04.002 pmid: 25843624 |
[23] |
Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana[J]. Eur J Cell Biol, 2010, 89(2/3): 133-137.
doi: 10.1016/j.ejcb.2009.10.014 URL |
[24] | Chu XQ, Wang C, Chen XB, et al. The cotton WRKY gene Gh-WRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11): e0143022. |
[25] | Chen JN, Nolan TM, Ye HX, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. |
[26] |
Zhang XY, Yang ZR, Li Z, et al. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: identification of genes involved in resistance to drought stress[J]. Gene, 2019, 710: 375-386.
doi: 10.1016/j.gene.2019.05.055 URL |
[27] |
El-Esawi MA, Al-Ghamdi AA, Ali HM, et al. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat(Triticum aestivum L.)[J]. Genes, 2019, 10(2): 163.
doi: 10.3390/genes10020163 URL |
[28] | Ghodke P, Khandagale K, Thangasamy A, et al. Comparative transcriptome analyses in contrasting onion(Allium cepa L.)genotypes for drought stress[J]. PLoS One, 2020, 15(8): e0237457. |
[29] |
Golldack D, Li C, Mohan H, et al. Tolerance to drought and salt stress in plants: Unraveling the signaling networks[J]. Front Plant Sci, 2014, 5: 151.
doi: 10.3389/fpls.2014.00151 pmid: 24795738 |
[30] |
Zhang LC, Zhao GY, Xia C, et al. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis[J]. J Exp Bot, 2012, 63(16): 5873-5885.
doi: 10.1093/jxb/ers237 URL |
[31] |
Babu MM, Iyer LM, Balaji S, et al. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons[J]. Nucleic Acids Res, 2006, 34(22): 6505-6520.
doi: 10.1093/nar/gkl888 pmid: 17130173 |
[32] |
Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2): 387-396.
doi: 10.1023/a:1006399311615 pmid: 10794538 |
[33] |
Wu XL, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009, 28(1): 21-30.
doi: 10.1007/s00299-008-0614-x URL |
[34] |
Qiu YP, Yu DQ. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environ Exp Bot, 2009, 65(1): 35-47.
doi: 10.1016/j.envexpbot.2008.07.002 URL |
[35] |
Marè C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley[J]. Plant Mol Biol, 2004, 55(3): 399-416.
doi: 10.1007/s11103-004-0906-7 pmid: 15604689 |
[36] |
王瑞, 吴华玲, 王会芳, 等. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定[J]. 作物学报, 2013, 39(11): 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944 |
Wang R, Wu HL, Wang HF, et al. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat[J]. Acta Agron Sin, 2013, 39(11): 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944 URL |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[12] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[13] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||