生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 220-226.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0691
武玉环1,2,3(), 彭焕3, 葛逢勇3, 彭德良3(), 刘大群1(), 李亚宁1
收稿日期:
2022-06-05
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
武玉环,女,博士,讲师,研究方向:作物线虫病害;E-mail:基金资助:
WU Yu-huan1,2,3(), PENG Huan3, GE Feng-yong3, PENG De-liang3(), LIU Da-qun1(), LI Ya-ning1
Received:
2022-06-05
Published:
2022-11-26
Online:
2022-12-01
摘要:
为了丰富防治线虫的真菌资源,测定了实验室分离保存的5株生防真菌粉红粘帚霉JGZ、淡紫紫孢菌Y2和BL2、哈茨木霉菌L4和球孢白僵菌BJ对甜菜孢囊线虫、大豆孢囊线虫和禾谷孢囊线虫的杀线虫活性。结果表明,淡紫紫孢菌Y2和哈茨木霉菌L4的孢囊寄生率为100%,随着作用时间增长,孢囊壁消解破裂。5株真菌发酵液随着稀释倍数的增加,线虫的校正死亡率降低。哈茨木霉菌L4的5倍发酵稀释液对甜菜孢囊线虫、大豆孢囊线虫和禾谷孢囊线虫的校正死亡率分别为96.75%、95.95%和96.35%;淡紫紫孢菌Y2的5倍发酵稀释液对甜菜孢囊线虫、大豆孢囊线虫和禾谷孢囊线虫的校正死亡率分别为97.37%、95.74%和97.77%,两者差异不显著。盆栽试验结果表明,哈茨木霉菌L4和淡紫紫孢菌Y2发酵液作用大豆孢囊线虫30 d,孢囊减退率分别为43.67%和41.87%,根长和茎粗显著高于其他处理,哈茨木霉菌L4处理地上鲜重和地下鲜重显著高于其他处理。结合孢囊寄生率、发酵液杀线活性、孢囊减退率和促生作用综合评价,哈茨木霉菌L4生防效果最好。
武玉环, 彭焕, 葛逢勇, 彭德良, 刘大群, 李亚宁. 5株生防真菌对孢囊线虫的杀线活性测定[J]. 生物技术通报, 2022, 38(11): 220-226.
WU Yu-huan, PENG Huan, GE Feng-yong, PENG De-liang, LIU Da-qun, LI Ya-ning. Nematicidal Activities Determination of Five Biocontrol Fungi Against Cyst Nematodes[J]. Biotechnology Bulletin, 2022, 38(11): 220-226.
图2 5株生防真菌对孢囊的寄生性 A:粉红粘帚霉JGZ;B:淡紫紫孢菌BL2;C:哈茨木霉菌L4;D:淡紫紫孢菌Y2;E:球孢白僵菌BJ;F:未被寄生的孢囊
Fig. 2 Parasitism of five biocontrol fungi against cysts A: Gliocladium roseum JGZ; B: Purpureocillium lilacinum BL2; C: Trichoderma harzianum L4; D: Purpureocillium lilacinum Y2; E: Beauveria bassiana BJ; F: an unparasitic cyst
菌株Strain | 稀释倍数 Dilution rate | 甜菜孢囊线虫 Heterodera schachtii | 大豆孢囊线虫 Heterodera glycines | 禾谷孢囊线虫 Heterodera avenae |
---|---|---|---|---|
粉红粘帚霉(G. roseum)JGZ | 5× | 85.58±3.21Ac | 86.61±2.92Ab | 98.18±0.86Aa |
10× | 78.51±4.66Bc | 83.99±3.68Ab | 87.85±2.97Bb | |
15× | 75.86±2.80Bc | 82.37±3.77ABb | 75.70±4.32Cd | |
20× | 64.04±4.01Cc | 77.94±4.23Bc | 71.72±2.94Cc | |
淡紫紫孢菌(P. lilacinum)BL2 | 5× | 95.95±1.59Aa | 89.67±4.47Ab | 96.56±2.09Aa |
10× | 95.73±2.55Aa | 82.96±3.15Bb | 88.47±2.70Bb | |
15× | 80.72±2.64Bb | 61.27±3.25Cd | 80.16±1.13Cbc | |
20× | 75.96±3.38Cb | 53.64±4.53Dd | 74.95±5.17Dc | |
哈茨木霉菌(T. harzianum)L4 | 5× | 96.75±1.32Aa | 95.95±2.57Aa | 96.35±1.36Aa |
10× | 94.53±3.48Aa | 93.91±3.14ABa | 87.44±2.02Bb | |
15× | 83.77±2.71Bb | 93.51±1.35ABa | 76.73±3.15Ccd | |
20× | 78.39±2.21Cab | 92.31±2.19Ba | 60.81±3.53Dd | |
淡紫紫孢菌(P. lilacinum)Y2 | 5× | 97.37±1.35Aa | 95.74±1.66Aa | 97.77±0.84Aa |
10× | 95.73±2.22Aa | 92.49±2.25ABa | 93.52±1.36Ba | |
15× | 94.32±3.00Aa | 88.65±3.98BCa | 90.69±1.64Ca | |
20× | 84.24±3.08Ba | 84.41±4.33Cb | 86.67±2.41Da | |
球孢白僵菌(B. bassiana)BJ | 5× | 92.09±2.82Ab | 82.35±3.01Ac | 94.13±2.53Ab |
10× | 84.97±5.10Ab | 77.68±3.67Ac | 85.02±5.01Bb | |
15× | 70.00±4.79Bd | 68.79±6.49Bc | 82.59±3.03Bb | |
20× | 59.19±9.85Cc | 34.41±3.43Ce | 82.02±2.80Bb |
表1 5株生防真菌发酵液作用3种孢囊线虫48 h的校正死亡率
Table 1 Corrected mortalities of five fungi fermentation broth against cyst nematodes treated for 48 h/%
菌株Strain | 稀释倍数 Dilution rate | 甜菜孢囊线虫 Heterodera schachtii | 大豆孢囊线虫 Heterodera glycines | 禾谷孢囊线虫 Heterodera avenae |
---|---|---|---|---|
粉红粘帚霉(G. roseum)JGZ | 5× | 85.58±3.21Ac | 86.61±2.92Ab | 98.18±0.86Aa |
10× | 78.51±4.66Bc | 83.99±3.68Ab | 87.85±2.97Bb | |
15× | 75.86±2.80Bc | 82.37±3.77ABb | 75.70±4.32Cd | |
20× | 64.04±4.01Cc | 77.94±4.23Bc | 71.72±2.94Cc | |
淡紫紫孢菌(P. lilacinum)BL2 | 5× | 95.95±1.59Aa | 89.67±4.47Ab | 96.56±2.09Aa |
10× | 95.73±2.55Aa | 82.96±3.15Bb | 88.47±2.70Bb | |
15× | 80.72±2.64Bb | 61.27±3.25Cd | 80.16±1.13Cbc | |
20× | 75.96±3.38Cb | 53.64±4.53Dd | 74.95±5.17Dc | |
哈茨木霉菌(T. harzianum)L4 | 5× | 96.75±1.32Aa | 95.95±2.57Aa | 96.35±1.36Aa |
10× | 94.53±3.48Aa | 93.91±3.14ABa | 87.44±2.02Bb | |
15× | 83.77±2.71Bb | 93.51±1.35ABa | 76.73±3.15Ccd | |
20× | 78.39±2.21Cab | 92.31±2.19Ba | 60.81±3.53Dd | |
淡紫紫孢菌(P. lilacinum)Y2 | 5× | 97.37±1.35Aa | 95.74±1.66Aa | 97.77±0.84Aa |
10× | 95.73±2.22Aa | 92.49±2.25ABa | 93.52±1.36Ba | |
15× | 94.32±3.00Aa | 88.65±3.98BCa | 90.69±1.64Ca | |
20× | 84.24±3.08Ba | 84.41±4.33Cb | 86.67±2.41Da | |
球孢白僵菌(B. bassiana)BJ | 5× | 92.09±2.82Ab | 82.35±3.01Ac | 94.13±2.53Ab |
10× | 84.97±5.10Ab | 77.68±3.67Ac | 85.02±5.01Bb | |
15× | 70.00±4.79Bd | 68.79±6.49Bc | 82.59±3.03Bb | |
20× | 59.19±9.85Cc | 34.41±3.43Ce | 82.02±2.80Bb |
图3 5株生防真菌发酵液对孢囊线虫二龄幼虫作用后的内部特征 A:粉红粘帚霉JGZ;B:淡紫紫孢菌BL2;C:哈茨木霉菌L4;D:淡紫紫孢菌Y2;E:球孢白僵菌BJ;F:CK
Fig. 3 Morphological characters of five fungi fermentation broths on the J2 of cyst nematodes A: Gliocladium roseum JGZ; B: Purpureocillium lilacinum BL2; C: Trichoderma harzianum L4; D: Purpureocillium lilacinum Y2; E: Beauveria bassiana BJ; F: CK
图4 5株生防真菌发酵液处理后的孢囊数量 不同小写字母表示菌株发酵液作用后孢囊数量差异显著(P<0.05)
Fig. 4 Number of cysts treated by five fungi fermentation broths Different lowercase letters indicate significant differences among cysts treated by fungi fermentation broth(P< 0.05)
处理 Treatment | 株高 Height/cm | 根长 Length of root/cm | 茎粗 Stem diameter/cm | 地上鲜重 Above-ground fresh weight/g | 地下鲜重 Under-ground fresh weight/g |
---|---|---|---|---|---|
粉红粘帚霉(G. roseum)JGZ | 36.56±2.20a | 14.56±1.36b | 0.31±0.01b | 1.90±0.17c | 0.22±0.07b |
淡紫紫孢菌(P. lilacinum)BL2 | 34.64±1.87a | 13.52±1.09b | 0.32±0.02b | 2.15±0.34bc | 0.23±0.05b |
哈茨木霉菌(T. harzianum)L4 | 35.36±1.13a | 20.30±1.12a | 0.35±0.03a | 2.83±0.13a | 0.39±0.04a |
淡紫紫孢菌(P. lilacinum)Y2 | 36.04±1.50a | 18.88±0.86a | 0.35±0.03a | 2.31±0.15b | 0.29±0.04b |
球孢白僵菌(B. bassiana)BJ | 36.20±1.28a | 14.35±1.47b | 0.31±0.01b | 1.83±0.10c | 0.24±0.07b |
CK | 35.37±0.57a | 13.87±1.50b | 0.32±0.01b | 2.10±0.34bc | 0.24±0.04b |
表2 5株生防真菌发酵液对大豆生长指标的影响
Table 2 The effects of five biocontrol fungi fermentation broths on the growth of soybean
处理 Treatment | 株高 Height/cm | 根长 Length of root/cm | 茎粗 Stem diameter/cm | 地上鲜重 Above-ground fresh weight/g | 地下鲜重 Under-ground fresh weight/g |
---|---|---|---|---|---|
粉红粘帚霉(G. roseum)JGZ | 36.56±2.20a | 14.56±1.36b | 0.31±0.01b | 1.90±0.17c | 0.22±0.07b |
淡紫紫孢菌(P. lilacinum)BL2 | 34.64±1.87a | 13.52±1.09b | 0.32±0.02b | 2.15±0.34bc | 0.23±0.05b |
哈茨木霉菌(T. harzianum)L4 | 35.36±1.13a | 20.30±1.12a | 0.35±0.03a | 2.83±0.13a | 0.39±0.04a |
淡紫紫孢菌(P. lilacinum)Y2 | 36.04±1.50a | 18.88±0.86a | 0.35±0.03a | 2.31±0.15b | 0.29±0.04b |
球孢白僵菌(B. bassiana)BJ | 36.20±1.28a | 14.35±1.47b | 0.31±0.01b | 1.83±0.10c | 0.24±0.07b |
CK | 35.37±0.57a | 13.87±1.50b | 0.32±0.01b | 2.10±0.34bc | 0.24±0.04b |
[1] |
Folkertsma RT. Inter- and intraspecific variation between populations of Globodera rostochiensis and G. Pallida revealed by random amplified polymorphic DNA[J]. Phytopathology, 1994, 84(8): 807.
doi: 10.1094/Phyto-84-807 URL |
[2] |
Kort J, Ross H, Stone AR, et al. An international scheme for identifying and classifying pathotypes of potato cyst-Nematodes Globodera rostochiensis and G. pallida[J]. Nematologica, 1977, 23(3): 333-339.
doi: 10.1163/187529277X00057 URL |
[3] |
Ramsay G, Bryan G, Castelli L, et al. Investigation of resistance specificity amongst fifteen wild Solanum species to a range of Globodera pallida and G. rostochiensis populations[J]. Nematology, 2005, 7(5): 689-699.
doi: 10.1163/156854105775143017 URL |
[4] |
Fullaondo A, Barrena E, Viribay M, et al. Identification of potato cyst nematode species Globodera rostochiensis and G. pallida by PCR using specific primer combinations[J]. Nematology, 1999, 1(2): 157-163.
doi: 10.1163/156854199508126 URL |
[5] | Būda V, Cepulytė-Rakauskienė R. The effect of linalool on second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida[J]. J Nematol, 2011, 43(3/4): 149-151. |
[6] |
Byrne JT, Maher NJ, Jones PW. Comparative responses of Globodera rostochiensis and G. pallida to hatching chemicals[J]. J Nematol, 2001, 33(4): 195-202.
pmid: 19265881 |
[7] |
Cui L, Sun L, Gao X, et al. The impact of resistant and susceptible wheat cultivars on the multiplication ofHeterodera filipjevi and H. avenae in parasite-infested soil[J]. Plant Pathol, 2016, 65(7): 1192-1199.
doi: 10.1111/ppa.12495 URL |
[8] |
Luo SJ, Kong LG, Peng H, et al. Golden Promise barley(Hordeum vulgare)is a suitable candidate model host for investigation interaction with Heterodera avenae[J]. J Integr Agric, 2017, 16(7): 1537-1546.
doi: 10.1016/S2095-3119(16)61595-2 URL |
[9] |
Baklawa M, Niere B, Heuer H, et al. Characterisation of cereal cyst nematodes in Egypt based on morphometrics, RFLP and rDNA-ITS sequence analyses[J]. Nematology, 2015, 17(1): 103-115.
doi: 10.1163/15685411-00002855 URL |
[10] |
Yavuzaslanoglu E, Elekcioglu HI, Nicol JM, et al. Distribution, frequency and occurrence of cereal nematodes on the Central Anatolian Plateau in Turkey and their relationship with soil physicochemical properties[J]. Nematology, 2012, 14(7): 839-854.
doi: 10.1163/156854112X631926 URL |
[11] |
Nour SM, Lawrence JR, Zhu H, et al. Bacteria associated with cysts of the soybean cyst nematode(Heterodera glycines)[J]. Appl Environ Microbiol, 2003, 69(1): 607-615.
doi: 10.1128/AEM.69.1.607-615.2003 URL |
[12] |
Lian Y, Guo JQ, Li HC, et al. A new race(X12)of soybean cyst nematode in China[J]. J Nematol, 2017, 49(3): 321-326.
pmid: 29062156 |
[13] |
Meyer S, Huettel R, Liu XZ, et al. Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility[J]. Nematology, 2004, 6(1): 23-32.
doi: 10.1163/156854104323072883 URL |
[14] | Ali MA, Wieczorek K, Kreil DP, et al. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots[J]. PLoS One, 2014, 9(7): e102360. |
[15] |
Davies LJ, Lilley CJ, Paul Knox J, et al. Syncytia formed by adult female Heterodera schachtii in Arabidopsis thaliana roots have a distinct cell wall molecular architecture[J]. New Phytol, 2012, 196(1): 238-246.
doi: 10.1111/j.1469-8137.2012.04238.x pmid: 22803660 |
[16] |
Griffin GD. Differences in the response of certain weed host populations to Heterodera schachtii[J]. J Nematol, 1982, 14(2): 174-182.
pmid: 19295693 |
[17] |
Hewezi T, Piya S, Qi MS, et al. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility[J]. Plant J, 2016, 88(2): 179-192.
doi: 10.1111/tpj.13238 URL |
[18] | 彭德良, Subbotin S, Moens M. 小麦禾谷胞囊线虫(Heterodera avenae)的核糖体基因(rDNA)限制性片段长度多态性研究[J]. 植物病理学报, 2003, 33(4): 323-329. |
Peng DL, Subbotin S, Moens M. rDNA restriction fragment length polymorphism of Heterodera avenae in China[J]. Acta Phytopathol Sin, 2003, 33(4): 323-329. | |
[19] | 赵洪海, 丁海燕. 2012—2013年山东省小麦禾谷孢囊线虫发生分布调查[J]. 山东农业科学, 2014, 46(4): 83-86, 91. |
Zhao HH, Ding HY. Investigation on occurrence and distribution of cereal cyst nematode in wheat fields of Shandong Province in 2012-2013[J]. Shandong Agric Sci, 2014, 46(4): 83-86, 91. | |
[20] | 苏致衡, 黄文坤, 郑国栋, 等. 北京地区小麦禾谷孢囊线虫病发生动态调查[J]. 植物保护, 2013, 39(1): 116-120. |
Su ZH, Huang WK, Zheng GD, et al. Investigation on the occurrence of Heterodera avenae in Beijing[J]. Plant Prot, 2013, 39(1): 116-120. | |
[21] | 彭德良. 植物线虫病害:我国粮食安全面临的重大挑战[J]. 生物技术通报, 2021, 37(7): 1-2. |
Peng DL. Plant nematode diseases: serious challenges to China’s food security[J]. Biotechnol Bull, 2021, 37(7): 1-2. | |
[22] | 乔精松, 彭德良, 刘慧, 等. 甜菜孢囊线虫在我国的寄主范围及生活史研究[J]. 植物保护, 2021, 47(3): 177-183. |
Qiao JS, Peng DL, Liu H, et al. The host range and life history of sugarbeet cyst nematode Heterodera schachtii in China[J]. Plant Prot, 2021, 47(3): 177-183. | |
[23] |
Peng H, Liu H, Gao L, et al. Identification of Heterodera schachtii on sugar beet in Xinjiang uygur autonomous region of China[J]. J Integr Agric, 2022, 21(6): 1694-1702.
doi: 10.1016/S2095-3119(21)63797-8 URL |
[24] | Xiang N, Lawrence KS, Kloepper JW, et al. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria(PGPR)on soybean[J]. PLoS One, 2017, 12(7): e0181201. |
[25] | 屈楠. 大豆孢囊线虫生防细菌的分离、鉴定及应用基础研究[D]. 杭州: 浙江大学, 2019. |
Qu N. Isolation, identification and application of bacterial biocontrol agents to Heterodera glycines[D]. Hangzhou: Zhejiang University, 2019. | |
[26] | 陈井生, 陈立杰, 刘大伟, 等. 放线菌Snea49的种类鉴定及对胞囊线虫的活性评价[J]. 大豆科学, 2010, 29(4): 663-665. |
Chen JS, Chen LJ, Liu DW, et al. Indentification of the strain Snea49 and evaluation for nematicidal activity against soybean cyst nematode[J]. Soybean Sci, 2010, 29(4): 663-665. | |
[27] | 李婷, 黄文坤, 彭德良, 等. 3株生防真菌发酵液对大豆孢囊线虫的防治效果[J]. 华中农业大学学报, 2017, 36(1): 42-46. |
Li T, Huang WK, Peng DL, et al. Control efficiency of three fungal strains’ fermentation broth on soybean cyst nematode(Heterodera glycines)[J]. J Huazhong Agric Univ, 2017, 36(1): 42-46. | |
[28] |
张辉民, 黄文坤, 孔令安, 等. 禾谷孢囊线虫生防真菌的分离鉴定及初步应用[J]. 华北农学报, 2013, 28(4): 190-194.
doi: 10.3969/j.issn.1000-7091.2013.04.035 |
Zhang HM, Huang WK, Kong LG, et al. Identification and preliminary application of biocontrol fungi from cereal cyst nematode[J]. Acta Agric Boreali Sin, 2013, 28(4): 190-194. | |
[29] | 陈秀菊, 李惠霞, 徐志鹏, 等. 3株生防真菌的杀线虫活性及种类鉴定[J]. 大豆科学, 2019, 38(4): 576-583. |
Chen XJ, Li HX, Xu ZP, et al. Nematocidal activities and species identification of three biocontrol fungi[J]. Soybean Sci, 2019, 38(4): 576-583. | |
[30] | 田忠玲. 大豆孢囊线虫生防真菌的筛选、鉴定及应用基础研究[D]. 杭州: 浙江大学, 2016. |
Tian ZL. Isolation, identification and application of fungal biocontrol agents to Heterodera glycines[D]. Hangzhou: Zhejiang University, 2016. | |
[31] |
Jin N, Liu SM, Peng H, et al. Isolation and characterization of Aspergillus niger NBC001 underlying suppression against Heterodera glycines[J]. Sci Rep, 2019, 9(1): 591.
doi: 10.1038/s41598-018-37827-6 pmid: 30679719 |
[32] |
陈倩, 张露源, 陈伯昌, 等. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0454 |
Chen Q, Zhang LY, Chen BC, et al. Optimization of fermentation conditions of Myrothecium verrucaria ZW-2, a biocontrol strain against Heterodera glycines and analysis of active substances[J]. Biotechnol Bull, 2021, 37(7): 127-136. | |
[33] | 张春龙, 肖炎农, 向妮, 等. 淡紫拟青霉防治小麦禾谷孢囊线虫病研究[J]. 植物保护, 2014, 40(4): 181-184. |
Zhang CL, Xiao YN, Xiang N, et al. Biological control effect of Paecilomyces lilacinus against cereal cyst nematode(CCN)[J]. Plant Prot, 2014, 40(4): 181-184. |
[1] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[2] | 郭文博, 路杨, 隋丽, 赵宇, 邹晓威, 张正坤, 李启云. 球孢白僵菌真菌病毒BbPmV-4外壳蛋白多克隆抗体制备及应用[J]. 生物技术通报, 2023, 39(10): 58-67. |
[3] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[4] | 关怡, 李新, 王定一, 杜茜, 张龙斌, 叶秀云. BbRho5对球孢白僵菌生长速率的作用研究[J]. 生物技术通报, 2022, 38(2): 132-140. |
[5] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[6] | 刘娟, 朱春晓, 肖雪琼, 莫陈汨, 王高峰, 肖炎农. 淡紫紫孢菌亲环蛋白PlCYP6 互作蛋白的筛选[J]. 生物技术通报, 2021, 37(7): 137-145. |
[7] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[8] | 邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34. |
[9] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
[10] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[11] | 王惠, 张顺斌, 金贺, 王晗, 张耕华, 夏诗宁, 陈井生, 段玉玺. 4-香豆酸辅酶A连接酶响应大豆孢囊线虫胁迫的潜在功能[J]. 生物技术通报, 2021, 37(7): 71-80. |
[12] | 张婉君, 吴小芹, 王亚会. 松材线虫拮抗细菌的杀线活性及其发酵培养特性[J]. 生物技术通报, 2019, 35(7): 76-82. |
[13] | 石一珺;申屠旭萍;俞晓平;. 重寄生菌哈茨木霉的研究及其在植病生防中的应用[J]. , 2008, 0(S1): 76-78. |
[14] | 雷敬超;李传浩;黄惠琴;蔡海宝;鲍时翔;. 杀线虫海洋放线菌的筛选及菌株HA07011的鉴定[J]. , 2007, 0(06): 146-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||