生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 13-25.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0865
葛颜锐(), 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽()
收稿日期:
2022-07-14
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
李瑞丽,女,博士,副教授,研究方向:植物分子细胞生物学;E-mail:liruili@bifu.edu.cn作者简介:
葛颜锐,女,硕士研究生,研究方向:植物分子细胞生物学;E-mail:geyanrui@bjfu.edu.cn
基金资助:
GE Yan-rui(), ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li()
Received:
2022-07-14
Published:
2023-03-26
Online:
2023-04-10
摘要:
维管形成层是植物的次生分生组织,它的活动促进植物侧向生长。近年来,大量研究成果加深了对维管形成层的了解,但与顶端分生组织相比,对维管形成层还是知之甚少。遗传与分子生物学研究发现,形成层的增殖与分化受多因素调控,包括长距离激素信号、短距离肽信号及两者之间的相互作用。除此之外,各种转录因子和microRNAs在维管形成层活动的调控过程中也发挥着关键作用。本文主要阐述了维管形成层发育及调控其增殖分化的新发现,并且对该领域目前的研究现状以及未来研究的重点方向进行了总结与展望。
葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25.
GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium[J]. Biotechnology Bulletin, 2023, 39(3): 13-25.
名称 Name | 表达部位 Location | 受体 Receptor | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
CLE41/44/TDIF | 韧皮部 Phloem | PXY/TDR | 促进维管形成层细胞分裂,抑制形成层分化 Promote vascular cambium cell division and inhibit cambium differentiation | [ |
XVP | [ | |||
CLE9/10 | 木质部前体细胞 Xylem precursor cells | HSL1 | 抑制气孔细胞的分裂 Inhibit stomatal cell division | [ |
BAM | 抑制形成层细胞平周分裂 Inhibit periferential division of cambial cells | [ | ||
CLE45 | 原生韧皮部 Primary phloem | BAM3 | 负调控拟南芥原韧皮部分化 Negatively regulate of Arabidopsis prophloem differentiation | [ |
CLE25 | 韧皮部 Phloem | CLERK- CLV2 | 促进韧皮部的启动 Promote phloem initiation | [ |
表1 参与维管形成层调控的多肽分子
Table 1 Peptides involved in vascular cambium regulation
名称 Name | 表达部位 Location | 受体 Receptor | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
CLE41/44/TDIF | 韧皮部 Phloem | PXY/TDR | 促进维管形成层细胞分裂,抑制形成层分化 Promote vascular cambium cell division and inhibit cambium differentiation | [ |
XVP | [ | |||
CLE9/10 | 木质部前体细胞 Xylem precursor cells | HSL1 | 抑制气孔细胞的分裂 Inhibit stomatal cell division | [ |
BAM | 抑制形成层细胞平周分裂 Inhibit periferential division of cambial cells | [ | ||
CLE45 | 原生韧皮部 Primary phloem | BAM3 | 负调控拟南芥原韧皮部分化 Negatively regulate of Arabidopsis prophloem differentiation | [ |
CLE25 | 韧皮部 Phloem | CLERK- CLV2 | 促进韧皮部的启动 Promote phloem initiation | [ |
名称 Name | 表达部位 Location | 靶基因 Target gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MP/ARF5 | 原形成层 Procambia | WOX4 | 促进木质部分化 Promote xylem differentiation | [ |
TMO5 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ | ||
TMO5-LHW | 初生木质部 Primary xylem | LOG3/4 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ |
DOF2.1 | 促进原形成层细胞分裂 Promote the division of the protocambial cells | [ | ||
WOX4/14 | 原形成层、维管形成层 Procambia and vascular cambium | TMO6 | 促进形成层增殖,参与维管束形状的确定 Promote cambium proliferation, and participate in the determination of vascular bundle shape | [ |
LBD4 | ||||
TMO6 | 维管形成层 Vascular cambium | LBD4 | ||
SOC1 | 顶端分生组织、原形成层 Apical meristem and procambia | AHL15 | 促进开花,影响分生组织的确定性,抑制次生生长 Promote flowering, affect the certainty of meristem, and inhibit secondary growth | [ |
FUL | ||||
AHL15 | 维管形成层 Vascular cambium | IPT3/7、LOG5 | 抑制腋芽分生组织成熟,延长寿命,促进形成层活性,促进次生木质部的发育 Inhibit the maturation of axillary bud meristem, prolong the life span, promote the activity of cambium, and promote the development of secondary xylem | [ |
XVP | 维管形成层 Vascular cambium | CLE44 | 促进木质部分化,维持维管稳定 Promote xylem differentiation, and maintain vascular stability | [ |
EPFL4/6 | 内皮层 Endodermis | ER/ERL1 | 促进原形成层发育 Promote the development of procambium | [ |
GRF | 维管形成层、短暂扩充细胞 Vascular cambium、transient amplifying cell | PLT | 促进生长 Promote growing | [ |
表2 参与维管形成层调控的转录因子
Table 2 Transcription factors involved in vascular cambium regulation
名称 Name | 表达部位 Location | 靶基因 Target gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MP/ARF5 | 原形成层 Procambia | WOX4 | 促进木质部分化 Promote xylem differentiation | [ |
TMO5 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ | ||
TMO5-LHW | 初生木质部 Primary xylem | LOG3/4 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ |
DOF2.1 | 促进原形成层细胞分裂 Promote the division of the protocambial cells | [ | ||
WOX4/14 | 原形成层、维管形成层 Procambia and vascular cambium | TMO6 | 促进形成层增殖,参与维管束形状的确定 Promote cambium proliferation, and participate in the determination of vascular bundle shape | [ |
LBD4 | ||||
TMO6 | 维管形成层 Vascular cambium | LBD4 | ||
SOC1 | 顶端分生组织、原形成层 Apical meristem and procambia | AHL15 | 促进开花,影响分生组织的确定性,抑制次生生长 Promote flowering, affect the certainty of meristem, and inhibit secondary growth | [ |
FUL | ||||
AHL15 | 维管形成层 Vascular cambium | IPT3/7、LOG5 | 抑制腋芽分生组织成熟,延长寿命,促进形成层活性,促进次生木质部的发育 Inhibit the maturation of axillary bud meristem, prolong the life span, promote the activity of cambium, and promote the development of secondary xylem | [ |
XVP | 维管形成层 Vascular cambium | CLE44 | 促进木质部分化,维持维管稳定 Promote xylem differentiation, and maintain vascular stability | [ |
EPFL4/6 | 内皮层 Endodermis | ER/ERL1 | 促进原形成层发育 Promote the development of procambium | [ |
GRF | 维管形成层、短暂扩充细胞 Vascular cambium、transient amplifying cell | PLT | 促进生长 Promote growing | [ |
[1] | 王洁华, 卢孟柱. 木本植物次生维管系统形态建成的基因调控与信号转导研究进展[J]. 林业科学, 2009, 45(11): 127-134. |
Wang JH, Lu MZ. Progress in study on the gene regulation and the signal transduction in the morphogenesis of secondary vascular system in woody plants[J]. Sci Silvae Sin, 2009, 45(11): 127-134. | |
[2] |
Etchells JP, Mishra LS, Kumar M, et al. Wood formation in trees is increased by manipulating PXY-regulated cell division[J]. Curr Biol, 2015, 25(8): 1050-1055.
doi: 10.1016/j.cub.2015.02.023 pmid: 25866390 |
[3] |
Fischer U, Kucukoglu M, Helariutta Y, et al. The dynamics of cambial stem cell activity[J]. Annu Rev Plant Biol, 2019, 70: 293-319.
doi: 10.1146/annurev-arplant-050718-100402 pmid: 30822110 |
[4] |
黄世全, 王棚涛, 郭思义, 等. 植物木质部进化与发育的研究概述[J]. 中国农学通报, 2019, 35(21): 82-89.
doi: 10.11924/j.issn.1000-6850.casb18020088 |
Huang SQ, Wang PT, Guo SY, et al. Evolution and development of plant xylem: a research summary[J]. Chin Agric Sci Bull, 2019, 35(21): 82-89.
doi: 10.11924/j.issn.1000-6850.casb18020088 |
|
[5] |
Scheres B, Wolkenfelt H, Willemsen V, et al. Embryonic origin of the Arabidopsis primary root and root meristem initials[J]. Development, 1994, 120(9): 2475-2487.
doi: 10.1242/dev.120.9.2475 URL |
[6] |
Chen HM, Pang Y, Zeng J, et al. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides[J]. J Integr Plant Biol, 2012, 54(7): 456-470.
doi: 10.1111/jipb.2012.54.issue-7 URL |
[7] | 刘君娣. 毛白杨维管组织发育和活动的机理研究[D]. 兰州: 甘肃农业大学, 2017. |
Liu JD. The initiation and activity of vascular tissues in Populus tomentosa Carr[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[8] | 苏会丽. 赤霉素与生长素协同调控毛白杨维管形成层分裂活性的分子机理[D]. 重庆: 西南大学, 2020. |
Su HL. Molecular mechanism of gibberellin and auxin synergistic regulating vascular cambial activity in Populus tomentosa[D]. Chongqing: Southwest University, 2020. | |
[9] |
Smetana O, Mäkilä R, Lyu MN, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium[J]. Nature, 2019, 565(7740): 485-489.
doi: 10.1038/s41586-018-0837-0 |
[10] |
Sundberg B, Uggla C. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris[J]. Physiol Plant, 1998, 104(1): 22-29.
doi: 10.1034/j.1399-3054.1998.1040104.x URL |
[11] |
Agusti J, Herold S, Schwarz M, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20242-20247.
doi: 10.1073/pnas.1111902108 pmid: 22123958 |
[12] |
Bhalerao RP, Fischer U. Auxin gradients across wood-instructive or incidental?[J]. Physiol Plant, 2014, 151(1): 43-51.
doi: 10.1111/ppl.12134 pmid: 24286229 |
[13] |
Baba K, Karlberg A, Schmidt J, et al. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen[J]. PNAS, 2011, 108(8): 3418-3423.
doi: 10.1073/pnas.1011506108 pmid: 21289280 |
[14] |
Hardtke CS. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. EMBO J, 1998, 17(5): 1405-1411.
doi: 10.1093/emboj/17.5.1405 pmid: 9482737 |
[15] |
Brackmann K, Qi JY, Gebert M, et al. Spatial specificity of auxin responses coordinates wood formation[J]. Nat Commun, 2018, 9(1): 875.
doi: 10.1038/s41467-018-03256-2 pmid: 29491423 |
[16] |
Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, et al. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root[J]. BMC Plant Biol, 2016, 16(Suppl 1): 5.
doi: 10.1186/s12870-015-0685-0 URL |
[17] |
Sauer M, Balla J, Luschnig C, et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity[J]. Genes Dev, 2006, 20(20): 2902-2911.
doi: 10.1101/gad.390806 URL |
[18] |
Ragni L, Nieminen K, Pacheco-Villalobos D, et al. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion[J]. Plant Cell, 2011, 23(4): 1322-1336.
doi: 10.1105/tpc.111.084020 URL |
[19] |
Björklund S, Antti H, Uddestrand I, et al. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin[J]. Plant J, 2007, 52(3): 499-511.
doi: 10.1111/j.1365-313X.2007.03250.x pmid: 17825053 |
[20] |
Johnsson C, Jin X, Xue WY, et al. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors[J]. Physiol Plant, 2019, 165(4): 673-689.
doi: 10.1111/ppl.12766 pmid: 29808599 |
[21] |
Israelsson M, Sundberg B, Moritz T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen[J]. Plant J, 2005, 44(3): 494-504.
pmid: 16236158 |
[22] |
Tal I, Zhang Y, Jørgensen ME, et al. The Arabidopsis NPF3 protein is a GA transporter[J]. Nat Commun, 2016, 7: 11486.
doi: 10.1038/ncomms11486 |
[23] |
Jasinski S, Piazza P, Craft J, et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Curr Biol, 2005, 15(17): 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211 |
[24] |
Ikematsu S, Tasaka M, Torii KU, et al. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl[J]. New Phytol, 2017, 213(4): 1697-1709.
doi: 10.1111/nph.14335 pmid: 27891614 |
[25] |
Matsumoto-Kitano M, Kusumoto T, Tarkowski P, et al. Cytokinins are central regulators of cambial activity[J]. Proc Natl Acad Sci USA, 2008, 105(50): 20027-20031.
doi: 10.1073/pnas.0805619105 pmid: 19074290 |
[26] |
de Rybel B, Möller B, Yoshida S, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis[J]. Dev Cell, 2013, 24(4): 426-437.
doi: 10.1016/j.devcel.2012.12.013 pmid: 23415953 |
[27] |
Ohashi-Ito K, Saegusa M, Iwamoto K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem[J]. Curr Biol, 2014, 24(17): 2053-2058.
doi: 10.1016/j.cub.2014.07.050 pmid: 25131670 |
[28] |
De Rybel B, Adibi M, Breda AS, et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis[J]. Science, 2014, 345(6197): 1255215.
doi: 10.1126/science.1255215 URL |
[29] |
Tokunaga H, Kojima M, Kuroha T, et al. Arabidopsis lonely guy(LOG)multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation[J]. Plant J, 2012, 69(2): 355-365.
doi: 10.1111/tpj.2011.69.issue-2 URL |
[30] |
Smet W, Sevilem I, de Luis Balaguer MA, et al. DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW[J]. Curr Biol, 2019, 29(3): 520-529.e6.
doi: S0960-9822(18)31675-0 pmid: 30686737 |
[31] |
Randall RS, Miyashima S, Blomster T, et al. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins[J]. Biol Open, 2015, 4(10): 1229-1236.
doi: 10.1242/bio.013128 pmid: 26340943 |
[32] |
Bürger M, Chory J. The many models of strigolactone signaling[J]. Trends Plant Sci, 2020, 25(4): 395-405.
doi: S1360-1385(19)30334-6 pmid: 31948791 |
[33] |
Hayward A, Stirnberg P, Beveridge C, et al. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiol, 2009, 151(1): 400-412.
doi: 10.1104/pp.109.137646 pmid: 19641034 |
[34] |
Wang HZ. Regulation of vascular cambium activity[J]. Plant Sci, 2020, 291: 110322.
doi: 10.1016/j.plantsci.2019.110322 URL |
[35] |
Love J, Björklund S, Vahala J, et al. Ethylene is an endogenous Stimulator of cell division in the cambial meristem of Popu-lus[J]. PNAS, 2009, 106(14): 5984-5989.
doi: 10.1073/pnas.0811660106 URL |
[36] |
Etchells JP, Provost CM, Turner SR. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling[J]. PLoS Genet, 2012, 8(11): e1002997.
doi: 10.1371/journal.pgen.1002997 URL |
[37] |
Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division[J]. Development, 2010, 137(5): 767-774.
doi: 10.1242/dev.044941 pmid: 20147378 |
[38] |
Sehr EM, Agusti J, Lehner R, et al. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation[J]. Plant J, 2010, 63(5): 811-822.
doi: 10.1111/tpj.2010.63.issue-5 URL |
[39] |
Wang CP, Liu NX, Geng Z, et al. Integrated transcriptome and proteome analysis reveals brassinosteroid-mediated regulation of cambium initiation and patterning in woody stem[J]. Hortic Res, 2022, 9: uhab048.
doi: 10.1093/hr/uhab048 URL |
[40] |
Jun J, Fiume E, Roeder AHK, et al. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis[J]. Plant Physiol, 2010, 154(4): 1721-1736.
doi: 10.1104/pp.110.163683 URL |
[41] |
Yamaguchi YL, Ishida T, Yoshimura M, et al. A collection of mutants for CLE-peptide-encoding genes in Arabidopsis generated by CRISPR/Cas9-mediated gene targeting[J]. Plant Cell Physiol, 2017, 58(11): 1848-1856.
doi: 10.1093/pcp/pcx139 pmid: 29036337 |
[42] |
Hirakawa Y, Shinohara H, Kondo Y, et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system[J]. PNAS, 2008, 105(39): 15208-15213.
doi: 10.1073/pnas.0808444105 pmid: 18812507 |
[43] |
Etchells JP, Smit ME, Gaudinier A, et al. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development[J]. New Phytol, 2016, 209(2): 474-484.
doi: 10.1111/nph.13642 pmid: 26414535 |
[44] |
Zhang HQ, Lin XY, Han ZF, et al. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs[J]. Cell Res, 2016, 26(5): 543-555.
doi: 10.1038/cr.2016.45 pmid: 27055373 |
[45] |
Li ZJ, Chakraborty S, Xu GZ. Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions[J]. PLoS One, 2017, 12(4): e0175317.
doi: 10.1371/journal.pone.0175317 URL |
[46] |
Morita J, Kato K, Nakane T, et al. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide[J]. Nat Commun, 2016, 7: 12383.
doi: 10.1038/ncomms12383 pmid: 27498761 |
[47] |
Fukuda H, Hardtke CS. Peptide signaling pathways in vascular differentiation[J]. Plant Physiol, 2020, 182(4): 1636-1644.
doi: 10.1104/pp.19.01259 pmid: 31796560 |
[48] |
Qian PP, Song W, Yokoo T, et al. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors[J]. Nat Plants, 2018, 4(12): 1071-1081.
doi: 10.1038/s41477-018-0317-4 pmid: 30518839 |
[49] |
Shinohara H, Moriyama Y, Ohyama K, et al. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs[J]. Plant J, 2012, 70(5): 845-854.
doi: 10.1111/j.1365-313X.2012.04934.x URL |
[50] |
Anne P, Amiguet-Vercher A, Brandt B, et al. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis[J]. Development, 2018, 145(10): dev162354.
doi: 10.1242/dev.162354 URL |
[51] |
Kang YH, Hardtke CS. Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling[J]. EMBO Rep, 2016, 17(8): 1145-1154.
doi: 10.15252/embr.201642450 URL |
[52] |
Hazak O, Brandt B, Cattaneo P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO Rep, 2017, 18(8): 1367-1381.
doi: 10.15252/embr.201643535 pmid: 28607033 |
[53] |
Breda AS, Hazak O, Schultz P, et al. A cellular insulator against CLE45 peptide signaling[J]. Curr Biol, 2019, 29(15): 2501-2508.e3.
doi: S0960-9822(19)30764-X pmid: 31327718 |
[54] | Ren SC, Song XF, Chen WQ, et al. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex[J]. J Integr Plant Biol, 2019, 61(10): 1043-1061. |
[55] |
Rodriguez-Villalon A, Gujas B, Kang YH, et al. Molecular genetic framework for protophloem formation[J]. Proc Natl Acad Sci USA, 2014, 111(31): 11551-11556.
doi: 10.1073/pnas.1407337111 pmid: 25049386 |
[56] |
Yuan BJ, Wang HZ. Peptide signaling pathways regulate plant vascular development[J]. Front Plant Sci, 2021, 12: 719606.
doi: 10.3389/fpls.2021.719606 URL |
[57] |
Etchells JP, Provost CM, Mishra L, et al. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation[J]. Development, 2013, 140(10): 2224-2234.
doi: 10.1242/dev.091314 pmid: 23578929 |
[58] |
Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development[J]. J Exp Bot, 2016, 67(16): 4813-4826.
doi: 10.1093/jxb/erw208 pmid: 27229733 |
[59] |
Smit ME, McGregor SR, Sun H, et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis[J]. Plant Cell, 2020, 32(2): 319-335.
doi: 10.1105/tpc.19.00562 URL |
[60] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling[J]. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 URL |
[61] |
Tang X, Wang C, Chai G, et al. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus[J]. Plant Cell, 2022, 34(9): 3364-3382.
doi: 10.1093/plcell/koac178 URL |
[62] |
Melzer S, Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana[J]. Nat Genet, 2008, 40(12): 1489-1492.
doi: 10.1038/ng.253 |
[63] |
Karami O, Rahimi A, Khan M, et al. A suppressor of axillary meristem maturation promotes longevity in flowering plants[J]. Nat Plants, 2020, 6(4): 368-376.
doi: 10.1038/s41477-020-0637-z pmid: 32284551 |
[64] |
Rahimi A, Karami O, Lestari AD, et al. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15[J]. Curr Biol, 2022, 32(8): 1764-1775.e3.
doi: 10.1016/j.cub.2022.02.060 URL |
[65] |
Kucukoglu M. A novel NAC domain transcription factor XVP controls the balance of xylem formation and cambial cell divisions[J]. New Phytol, 2020, 226(1): 5-7.
doi: 10.1111/nph.16400 pmid: 31960459 |
[66] |
Yang JH, Lee KH, Du Q, et al. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity[J]. New Phytol, 2020, 226(1): 59-74.
doi: 10.1111/nph.16289 pmid: 31660587 |
[67] |
Zhang HQ, Lin XY, Han ZF, et al. SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development[J]. Mol Plant, 2016, 9(10): 1406-1414.
doi: S1674-2052(16)30136-8 pmid: 27449136 |
[68] |
Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases[J]. J Exp Bot, 2013, 64(17): 5335-5343.
doi: 10.1093/jxb/ert196 pmid: 23881395 |
[69] | Wang N, Bagdassarian KS, Doherty RE, et al. Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue[J]. Development, 2019, 146(10): dev177105. |
[70] |
Uchida N, Lee JS, Horst RJ, et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem[J]. Proc Natl Acad Sci USA, 2012, 109(16): 6337-6342.
doi: 10.1073/pnas.1117537109 pmid: 22474391 |
[71] |
Rodriguez RE, Ercoli MF, Debernardi JM, et al. microRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots[J]. Plant Cell, 2015, 27(12): 3354-3366.
doi: 10.1105/tpc.15.00452 URL |
[72] |
Mallory AC, Reinhart BJ, Jones-Rhoades MW, et al. microRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region[J]. EMBO J, 2004, 23(16): 3356-3364.
doi: 10.1038/sj.emboj.7600340 pmid: 15282547 |
[73] |
Zhou YY, Honda M, Zhu HL, et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance[J]. Cell Rep, 2015, 10(11): 1819-1827.
doi: 10.1016/j.celrep.2015.02.047 URL |
[74] |
Miyashima S, Roszak P, Sevilem I, et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth[J]. Nature, 2019, 565(7740): 490-494.
doi: 10.1038/s41586-018-0839-y |
[75] |
Wang CY, Zhang SC, Yu Y, et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis[J]. Plant Biotechnol J, 2014, 12(8): 1132-1142.
doi: 10.1111/pbi.12222 URL |
[76] | Zhao YY, Lin S, Qiu ZB, et al. microRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis[J]. Plant Physiol, 2015, 169(4): 2539-2552. |
[77] |
Lu SF, Li QZ, Wei HR, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci USA, 2013, 110(26): 10848-10853.
doi: 10.1073/pnas.1308936110 URL |
[78] |
Hou J, Xu HM, Fan D, et al. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa[J]. New Phytol, 2020, 228(4): 1354-1368.
doi: 10.1111/nph.v228.4 URL |
[79] |
Mähönen AP, Bishopp A, Higuchi M, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development[J]. Science, 2006, 311(5757): 94-98.
doi: 10.1126/science.1118875 pmid: 16400151 |
[80] |
Bishopp A, Help H, El-Showk S, et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots[J]. Curr Biol, 2011, 21(11): 917-926.
doi: 10.1016/j.cub.2011.04.017 pmid: 21620702 |
[81] |
Immanen J, Nieminen K, Smolander OP, et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity[J]. Curr Biol, 2016, 26(15): 1990-1997.
doi: S0960-9822(16)30550-4 pmid: 27426519 |
[82] | Wang SN, Wang HZ. Coordination of multilayered signalling pathways on vascular cambium activity[J]. Annual Plant Reviews, 2020, 3(3): 457-472. |
[83] |
Kondo Y, Ito T, Nakagami H, et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling[J]. Nat Commun, 2014, 5: 3504.
doi: 10.1038/ncomms4504 pmid: 24662460 |
[84] |
Kondo Y, Fujita T, Sugiyama M, et al. A novel system for xylem cell differentiation in Arabidopsis thaliana[J]. Mol Plant, 2015, 8(4): 612-621.
doi: 10.1016/j.molp.2014.10.008 pmid: 25624147 |
[85] |
Han S, Cho H, Noh J, et al. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth[J]. Nat Plants, 2018, 4(8): 605-614.
doi: 10.1038/s41477-018-0180-3 pmid: 29988154 |
[86] |
Yang S, Wang SN, Li SJ, et al. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity[J]. J Exp Bot, 2020, 71(22): 7160-7170.
doi: 10.1093/jxb/eraa423 URL |
[87] |
Oralová V, Rosa JT, Soenens M, et al. Beyond the whole-mount phenotype: high-resolution imaging in fluorescence-based applications on zebrafish[J]. Biol Open, 2019, 8(5): bio042374.
doi: 10.1242/bio.042374 URL |
[88] |
Bencivenga S, Serrano-Mislata A, Bush M, et al. Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis[J]. Dev Cell, 2016, 39(2): 198-208.
doi: S1534-5807(16)30588-3 pmid: 27666746 |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[12] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[13] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||