生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 14-22.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1112
收稿日期:
2022-09-09
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
雷波,女,博士,研究员,研究方向:烟草分子生物学;E-mail: leibo_1981@163.com作者简介:
王兵,男,博士,助理研究员,研究方向:烟草分子生物学;E-mail: vipwb1519599@163.com
基金资助:
WANG Bing(), ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo()
Received:
2022-09-09
Published:
2023-05-26
Online:
2023-06-08
摘要:
植物侧枝的发育在植物形态建成中具有十分重要的地位,侧枝的形态直接影响植物的产量。侧枝的发育由生长点干细胞持续分裂和分化形成,包括侧生分生组织特化,侧生分生组织起始和侧生分生组织外生。侧枝的发育受到内部生长因子和外部环境信号的共同调节。文中总结了侧枝发育过程中侧生生长点干细胞起源、形成和休眠等过程的基本问题,综述了转录因子、激素、表观遗传、外界环境共同决定侧生分生组织形成和发育中的作用机制,为探讨植物侧枝的形成机理提供参考。
王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22.
WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development[J]. Biotechnology Bulletin, 2023, 39(5): 14-22.
调控因素Regulatory factor | 名称Name | 物种Species | 文献Reference |
---|---|---|---|
转录因子Transcription factor | WUS | 拟南芥Arabidopsis | [ |
DRN/DRNL-REV | 拟南芥Arabidopsis | [ | |
ZPR-REV | 拟南芥Arabidopsis | [ | |
LAS | 拟南芥Arabidopsis | [ | |
CUCs | 拟南芥Arabidopsis | [ | |
LOB | 玉米Maize | [ | |
LS | 番茄Tomato | [ | |
MOC1 | 水稻Rice | [ | |
BL/RAX1 | 番茄 Tomato 拟南芥 Arabidopsis | [ | |
LAX | 拟南芥Arabidopsis、水稻Rice | [ | |
ROX | 拟南芥Arabidopsis | [ | |
Barren stalk | 拟南芥Arabidopsis | [ | |
BRC1/TB1/ BRANCHED1-like | 玉米Maize、烟草Tobacco、番茄Tomato | [ | |
生长素Auxin | Atbud | 拟南芥Arabidopsis | [ |
YUCs | 拟南芥Arabidopsis | [ | |
LAZY1 | 水稻Rice | [ | |
细胞分裂素Cytokinin | ARRs | 拟南芥Arabidopsis | [ |
LOGs | 拟南芥Arabidopsis | [ | |
CKX | 水稻Rice | [ | |
IPT | 拟南芥Arabidopsis | [ | |
IPT3、IPT5、CYP73A2 | 玉米Maize 拟南芥Arabidopsis | [ | |
CRE1/AHK4、AHK3 | 拟南芥Arabidopsis | [ | |
独角金内酯Strigolactones | MAXs | 拟南芥Arabidopsis | [ |
油菜素内酯Brassinosteroids | BZR1 | 拟南芥Arabidopsis | [ |
BES1 | 拟南芥Arabidopsis | [ | |
光照Light | PHYB | 拟南芥Arabidopsis | [ |
营养元素(糖)Sugar | RA3 | 玉米Maize | [ |
转录后调控Post-transcriptional regulation | miR394 | 拟南芥Arabidopsis | [ |
miR165/166 | 拟南芥Arabidopsis | [ | |
OsmiR156 | 水稻Rice | [ | |
IPA1 | 水稻Rice | [ | |
表观遗传调控因子Epigenetics regulators | FAS1/ FAS2 | 拟南芥Arabidopsis | [ |
SYD | 拟南芥Arabidopsis | [ |
表1 植物侧枝发育过程中的调控因素
Table 1 Regulatory factors during lateral branch development in plants
调控因素Regulatory factor | 名称Name | 物种Species | 文献Reference |
---|---|---|---|
转录因子Transcription factor | WUS | 拟南芥Arabidopsis | [ |
DRN/DRNL-REV | 拟南芥Arabidopsis | [ | |
ZPR-REV | 拟南芥Arabidopsis | [ | |
LAS | 拟南芥Arabidopsis | [ | |
CUCs | 拟南芥Arabidopsis | [ | |
LOB | 玉米Maize | [ | |
LS | 番茄Tomato | [ | |
MOC1 | 水稻Rice | [ | |
BL/RAX1 | 番茄 Tomato 拟南芥 Arabidopsis | [ | |
LAX | 拟南芥Arabidopsis、水稻Rice | [ | |
ROX | 拟南芥Arabidopsis | [ | |
Barren stalk | 拟南芥Arabidopsis | [ | |
BRC1/TB1/ BRANCHED1-like | 玉米Maize、烟草Tobacco、番茄Tomato | [ | |
生长素Auxin | Atbud | 拟南芥Arabidopsis | [ |
YUCs | 拟南芥Arabidopsis | [ | |
LAZY1 | 水稻Rice | [ | |
细胞分裂素Cytokinin | ARRs | 拟南芥Arabidopsis | [ |
LOGs | 拟南芥Arabidopsis | [ | |
CKX | 水稻Rice | [ | |
IPT | 拟南芥Arabidopsis | [ | |
IPT3、IPT5、CYP73A2 | 玉米Maize 拟南芥Arabidopsis | [ | |
CRE1/AHK4、AHK3 | 拟南芥Arabidopsis | [ | |
独角金内酯Strigolactones | MAXs | 拟南芥Arabidopsis | [ |
油菜素内酯Brassinosteroids | BZR1 | 拟南芥Arabidopsis | [ |
BES1 | 拟南芥Arabidopsis | [ | |
光照Light | PHYB | 拟南芥Arabidopsis | [ |
营养元素(糖)Sugar | RA3 | 玉米Maize | [ |
转录后调控Post-transcriptional regulation | miR394 | 拟南芥Arabidopsis | [ |
miR165/166 | 拟南芥Arabidopsis | [ | |
OsmiR156 | 水稻Rice | [ | |
IPA1 | 水稻Rice | [ | |
表观遗传调控因子Epigenetics regulators | FAS1/ FAS2 | 拟南芥Arabidopsis | [ |
SYD | 拟南芥Arabidopsis | [ |
[47] |
Knauer S, Holt AL, Rubio-Somoza I, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Dev Cell, 2013, 24(2): 125-132.
doi: 10.1016/j.devcel.2012.12.009 URL |
[48] |
Zhang C, Fan LS, Le BH, et al. Regulation of ARGONAUTE10 expression enables temporal and spatial precision in axillary meristem initiation in Arabidopsis[J]. Dev Cell, 2020, 55(5): 603-616.e5.
doi: 10.1016/j.devcel.2020.10.019 pmid: 33232670 |
[49] |
Nguyen V, Gutzat R. Epigenetic regulation in the shoot apical meristem[J]. Curr Opin Plant Biol, 2022, 69: 102267.
doi: 10.1016/j.pbi.2022.102267 URL |
[50] |
Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 |
[51] |
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010, 42(6): 545-549.
doi: 10.1038/ng.592 pmid: 20495564 |
[52] |
Zhang L, Yu H, Ma B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nat Commun, 2017, 8: 14789.
doi: 10.1038/ncomms14789 pmid: 28317902 |
[53] |
Kaya H, Shibahara KI, Taoka KI, et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[J]. Cell, 2001, 104(1): 131-142.
pmid: 11163246 |
[54] |
Kwon CS, Chen CB, Wagner D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis[J]. Genes Dev, 2005, 19(8): 992-1003.
doi: 10.1101/gad.1276305 URL |
[55] |
Blakeslee JJ, Peer WA, Murphy AS. Auxin transport[J]. Curr Opin Plant Biol, 2005, 8(5): 494-500.
doi: 10.1016/j.pbi.2005.07.014 pmid: 16054428 |
[56] |
Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210): 189-194.
doi: 10.1038/nature07271 |
[1] | 胡玉欣, 焦雨铃. 植物干细胞的研究进展[J]. 中国基础科学, 2016, 18(1): 47-54, 62, 2. |
Hu YX, Jiao YL. Towa rds understanding of plant stem cells[J]. China Basic Sci, 2016, 18(1): 47-54, 62, 2. | |
[2] | 李亚栋, 张芊, 孙学辉, 等. 植物分枝发育的调控机制[J]. 中国农业科技导报, 2009, 11(4): 1-9. |
Li YD, Zhang Q, Sun XH, et al. Mechanism for controlling plant branching development[J]. J Agric Sci Technol, 2009, 11(4): 1-9. | |
[3] |
Schmitz G, Theres K. Shoot and inflorescence branching[J]. Curr Opin Plant Biol, 2005, 8(5): 506-511.
pmid: 16054429 |
[4] |
Shi BH, Zhang C, Tian CH, et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis[J]. PLoS Genet, 2016, 12(7): e1006168.
doi: 10.1371/journal.pgen.1006168 URL |
[5] |
Wang J, Tian CH, Zhang C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation[J]. Plant Cell, 2017, 29(6): 1373-1387.
doi: 10.1105/tpc.16.00579 URL |
[6] | Zhang C, Wang J, Wenkel S, et al. Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators[J]. Development, 2018, 145(24): dev158352. |
[7] |
Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes Dev, 2003, 17(9): 1175-1187.
doi: 10.1101/gad.260703 URL |
[8] |
Hibara KI, Karim MR, Takada S, et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. Plant Cell, 2006, 18(11): 2946-2957.
doi: 10.1105/tpc.106.045716 URL |
[9] |
Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize[J]. Plant Cell, 2006, 18(3): 574-585.
doi: 10.1105/tpc.105.039032 pmid: 16399802 |
[10] |
Schumacher K, Schmitt T, Rossberg M, et al. The lateral suppressor(Ls)gene of tomato encodes a new member of the VHIID protein family[J]. Proc Natl Acad Sci USA, 1999, 96(1): 290-295.
doi: 10.1073/pnas.96.1.290 pmid: 9874811 |
[11] |
Lin QB, Wang D, Dong H, et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1[J]. Nat Commun, 2012, 3: 752.
doi: 10.1038/ncomms1716 |
[12] |
Schmitz G, Tillmann E, Carriero F, et al. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems[J]. Proc Natl Acad Sci USA, 2002, 99(2): 1064-1069.
doi: 10.1073/pnas.022516199 pmid: 11805344 |
[13] |
Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. Plant Cell, 2006, 18(3): 586-597.
doi: 10.1105/tpc.105.038745 pmid: 16461581 |
[14] |
Keller T, Abbott J, Moritz T, et al. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development[J]. Plant Cell, 2006, 18(3): 598-611.
doi: 10.1105/tpc.105.038588 URL |
[15] |
Guo DS, Zhang JZ, Wang XL, et al. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis[J]. Plant Cell, 2015, 27(11): 3112-3127.
doi: 10.1105/tpc.15.00829 URL |
[16] |
Aguilar-Martínez JA, Uchida N, Townsley B, et al. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex[J]. Plant Physiol, 2015, 167(2): 424-442.
doi: 10.1104/pp.114.248625 pmid: 25524441 |
[17] |
Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA: major regulators of shoot branching in rice[J]. Proc Natl Acad Sci USA, 2003, 100(20): 11765-11770.
doi: 10.1073/pnas.1932414100 pmid: 13130077 |
[18] |
Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. Plant Cell, 2011, 23(9): 3276-3287.
doi: 10.1105/tpc.111.088765 URL |
[19] |
Yang F, Wang Q, Schmitz G, et al. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis[J]. Plant J, 2012, 71(1): 61-70.
doi: 10.1111/tpj.2012.71.issue-1 URL |
[20] |
Yao H, Skirpan A, Wardell B, et al. The barren stalk2 gene is required for axillary meristem development in maize[J]. Mol Plant, 2019, 12(3): 374-389.
doi: 10.1016/j.molp.2018.12.024 URL |
[21] |
Zhang QQ, Wang JG, Wang LY, et al. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity[J]. J Integr Plant Biol, 2020, 62(4): 421-432.
doi: 10.1111/jipb.v62.4 URL |
[22] | Chen L, Chen YQ, Ding AM, et al. Genome-wide analysis of TCP family in tobacco[J]. Genet Mol Res, 2016, 15(2): 2016 May 23;15(2). |
[23] |
Studer A, Zhao Q, Ross-Ibarra J, et al. Identification of a functional transposon insertion in the maize domestication gene tb1[J]. Nat Genet, 2011, 43(11): 1160-1163.
doi: 10.1038/ng.942 |
[24] |
Martín-Trillo M, Grandío EG, Serra F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching[J]. Plant J, 2011, 67(4): 701-714.
doi: 10.1111/tpj.2011.67.issue-4 URL |
[25] | Zhi F. Isolation and characterization of an Arabidopsis bushy and dwarf mutant[J]. Acta Botanica Sinica, 2003, 45(5): 621-625. |
[26] |
Poulet A, Kriechbaumer V. Bioinformatics analysis of phylogeny and transcription of TAA/YUC auxin biosynthetic genes[J]. Int J Mol Sci, 2017, 18(8): 1791.
doi: 10.3390/ijms18081791 URL |
[27] |
Li PJ, Wang YH, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Res, 2007, 17(5): 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779 |
[28] |
Chen YN, Fan XR, Song WJ, et al. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1[J]. Plant Biotechnol J, 2012, 10(2): 139-149.
doi: 10.1111/pbi.2011.10.issue-2 URL |
[29] |
Liu ZH, Dai XH, Li J, et al. The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis[J]. Plant Cell, 2020, 32(7): 2271-2291.
doi: 10.1105/tpc.19.00022 URL |
[30] |
Kuroha T, Tokunaga H, Kojima M, et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis[J]. Plant Cell, 2009, 21(10): 3152-3169.
doi: 10.1105/tpc.109.068676 URL |
[31] |
Joshi R, Sahoo KK, Tripathi AK, et al. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition[J]. Plant Cell Environ, 2018, 41(5): 936-946.
doi: 10.1111/pce.12947 URL |
[32] | Domagalska MA, Leyser O. Signal integration in the control of shoot branching[J]. Nat Rev Mol Cell Biol, 2011, 12(4): 211-221. |
[33] |
Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. Plant Cell, 2015, 27(1): 9-19.
doi: 10.1105/tpc.114.133744 URL |
[34] |
Takei K, Ueda N, Aoki K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant Cell Physiol, 2004, 45(8): 1053-1062.
doi: 10.1093/pcp/pch119 URL |
[35] |
Lan P, Li W, Fischer R. Arabidopsis thaliana wild type, pho1, and pho2 mutant plants show different responses to exogenous cytokinins[J]. Plant Physiol Biochem, 2006, 44(5/6): 343-350.
doi: 10.1016/j.plaphy.2006.06.016 URL |
[36] |
Booker J, Sieberer T, Wright W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Dev Cell, 2005, 8(3): 443-449.
doi: 10.1016/j.devcel.2005.01.009 pmid: 15737939 |
[37] |
Braun N, de Saint Germain A, Pillot JP, et al. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching[J]. Plant Physiol, 2012, 158(1): 225-238.
doi: 10.1104/pp.111.182725 pmid: 22045922 |
[38] | 王卫锋. 烟草打顶诱导的腋芽转录组分析及相关基因功能研究[D]. 北京: 中国农业科学院, 2019. |
[57] |
Arnaud N, Laufs P. Plant development: brassinosteroids go out of bounds[J]. Curr Biol, 2013, 23(4): R152-R154.
doi: 10.1016/j.cub.2013.01.001 URL |
[58] | 丁安琪, 冯莹, 潘腾飞, 等. 植物芽休眠调控分子机制研究进展[J]. 分子植物育种, 2015, 13(9): 2141-2146. |
Ding AQ, Feng Y, Pan TF, et al. The research progress of plant bud dormancy molecular mechanisms[J]. Mol Plant Breed, 2015, 13(9): 2141-2146. | |
[59] |
Hornitschek P, Lorrain S, Zoete V, et al. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers[J]. EMBO J, 2009, 28(24): 3893-3902.
doi: 10.1038/emboj.2009.306 pmid: 19851283 |
[60] |
Takei K, Sakakibara H, Taniguchi M, et al. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant Cell Physiol, 2001, 42(1): 85-93.
doi: 10.1093/pcp/pce009 pmid: 11158447 |
[61] |
Umehara M, Hanada A, Magome H, et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant Cell Physiol, 2010, 51(7): 1118-1126.
doi: 10.1093/pcp/pcq084 pmid: 20542891 |
[62] |
Wang B, Smith SM, Li JY. Genetic regulation of shoot architecture[J]. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[63] |
Barbier FF, Lunn JE, Beveridge CA. Ready, steady, go! A sugar hit starts the race to shoot branching[J]. Curr Opin Plant Biol, 2015, 25: 39-45.
doi: 10.1016/j.pbi.2015.04.004 pmid: 25938609 |
[64] | 蔺迎月, 吴斯俊, 王晓琴. 小立碗藓细胞重新编程过程中染色体重塑观察[J]. 北京农学院学报, 2015, 30(2): 1-4. |
Lin YY, Wu SJ, Wang XQ. Chromosome remodeling during cell reprogramming in the moss Physcomitrella patens[J]. J Beijing Univ Agric, 2015, 30(2): 1-4. | |
[38] | Wang WF. Transcriptomic analysis of topping-induced axillary shoots outgrowth and functional research of related genes in tobacco(Nicotiana tabacum)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
[39] |
Li L, Deng XW. It runs in the family: regulation of brassinosteroid signaling by the BZR1-BES1 class of transcription factors[J]. Trends Plant Sci, 2005, 10(6): 266-268.
pmid: 15949759 |
[40] |
Gendron JM, Liu JS, Fan M, et al. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109(51): 21152-21157.
doi: 10.1073/pnas.1210799110 pmid: 23213257 |
[41] |
Wang Y, Sun SY, Zhu WJ, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching[J]. Dev Cell, 2013, 27(6): 681-688.
doi: 10.1016/j.devcel.2013.11.010 pmid: 24369836 |
[42] |
Finlayson SA, Krishnareddy SR, Kebrom TH, et al. Phytochrome regulation of branching in Arabidopsis[J]. Plant Physiol, 2010, 152(4): 1914-1927.
doi: 10.1104/pp.109.148833 pmid: 20154098 |
[43] |
Zhou Y, Zhang DZ, An JX, et al. TCP transcription factors regulate shade avoidance via directly mediating the expression of both phytochrome interacting factors and auxin biosynthetic genes[J]. Plant Physiol, 2018, 176(2): 1850-1861.
doi: 10.1104/pp.17.01566 pmid: 29254986 |
[44] |
Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development[J]. J Exp Bot, 2010, 61(1): 11-24.
doi: 10.1093/jxb/erp304 pmid: 19815685 |
[45] | Kebrom TH, Brutnell TP, Finlayson SA. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways[J]. Plant Cell Environ, 2010, 33(1): 48-58. |
[46] |
Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature, 2006, 441(7090): 227-230.
doi: 10.1038/nature04725 URL |
[65] |
Zhang TQ, Lian H, Zhou CM, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration[J]. Plant Cell, 2017, 29(5): 1073-1087.
doi: 10.1105/tpc.16.00863 URL |
[66] |
Meng WJ, Cheng ZJ, Sang YL, et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. Plant Cell, 2017, 29(6): 1357-1372.
doi: 10.1105/tpc.16.00640 URL |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[6] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[7] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[8] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[9] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[10] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[11] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[12] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[13] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[14] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[15] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||