生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 206-218.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1446
收稿日期:
2022-11-23
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
谢田朋同为本文通讯作者作者简介:
谢田朋,女,博士,副教授,研究方向:药用植物生态;E-mail: xietianpeng@163.com
基金资助:
XIE Tian-peng1(), ZHANG Jia-ning1, DONG Yong-jun2, ZHANG Jian1, JING Ming1
Received:
2022-11-23
Published:
2023-07-26
Online:
2023-08-17
摘要:
通过探讨根际土壤微环境在当归抽薹时的变化,尝试为解决当归早期抽薹问题提供新的思路。以当归为研究对象,测定抽薹与未抽薹当归的根际土壤理化性质,利用16S rDNA和GC-MC技术测定根际土壤细菌群落及代谢组变化,并研究根际土壤性质、细菌群落及代谢物之间在当归抽薹现象中的关联性。结果显示,抽薹当归根际土壤中硝态氮含量较未抽薹当归明显升高。根际土壤细菌群落多样性及优势菌群在抽薹和未抽薹当归间并无差异,细菌群落较为相似,但10个非优势菌属在组间存在显著差异。抽薹当归根际土壤中有66种代谢物与未抽薹当归存在显著差异,其中52种明显上调,14种明显下调。差异代谢物主要富集在氨基酸代谢、异种生物降解和代谢、脂质代谢等7条相关通路上。硝态氮含量、Phaselicystis属和Rubellimicrobium属与抽薹当归差异代谢物显著负相关(P<0.05),硝态氮主要与不饱和脂肪酸的生物合成显著负相关,Phaselicystis属和Rubellimicrobium属主要与氨基苯甲酸酯降解、精氨酸和脯氨酸代谢显著负相关。当归早期抽薹与根际土壤硝态氮含量上升存在关联,同时当归早期抽薹会引起根际土壤代谢物和非优势菌群的相对丰度显著变化。根际土壤中硝态氮含量上升与Nitrosomonas属的相对丰度变化可能存在联系,但仍需进一步研究论证。
谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218.
XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis[J]. Biotechnology Bulletin, 2023, 39(7): 206-218.
理化性质 Physico-chemical properties | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
pH | 7.86±0.26a | 7.75±0.08a |
有机质 Organic matter /(g·kg-1) | 2.93±1.48a | 3.62±2.05a |
盐分Salinity /(mg·kg-1) | 7.44±0.18a | 7.66±0.30a |
全氮 Total nitrogen /(g·kg-1) | 1.73±0.01a | 1.73±0.01a |
硝态氮 Nitrate nitrogen /(mg·kg-1) | 53.17±9.33a | 42.36±6.19b |
氨态氮 Ammonia nitrogen /(mg·kg-1) | 25.75±5.39a | 21.76±3.54a |
全磷 Total P /(g·kg-1) | 3.50±0.01a | 3.50±0.01a |
有效磷 Available P /(mg·kg-1) | 39.17±5.62a | 44.06±5.47a |
全钾 Total K /(g·kg-1) | 3.64±0.03a | 3.64±0.01a |
有效钾 Available K /(mg·kg-1) | 165.58±27.97a | 171.65±34.34a |
表1 抽薹与未抽薹当归根际土壤的理化性质
Table 1 Physico-chemical properties of the rhizosphere soils of bolting and unbolting Angelica sinensis
理化性质 Physico-chemical properties | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
pH | 7.86±0.26a | 7.75±0.08a |
有机质 Organic matter /(g·kg-1) | 2.93±1.48a | 3.62±2.05a |
盐分Salinity /(mg·kg-1) | 7.44±0.18a | 7.66±0.30a |
全氮 Total nitrogen /(g·kg-1) | 1.73±0.01a | 1.73±0.01a |
硝态氮 Nitrate nitrogen /(mg·kg-1) | 53.17±9.33a | 42.36±6.19b |
氨态氮 Ammonia nitrogen /(mg·kg-1) | 25.75±5.39a | 21.76±3.54a |
全磷 Total P /(g·kg-1) | 3.50±0.01a | 3.50±0.01a |
有效磷 Available P /(mg·kg-1) | 39.17±5.62a | 44.06±5.47a |
全钾 Total K /(g·kg-1) | 3.64±0.03a | 3.64±0.01a |
有效钾 Available K /(mg·kg-1) | 165.58±27.97a | 171.65±34.34a |
Alpha多样性 Alpha diversity | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
测序覆盖度 Goods coverage | 0.99±0.00a | 0.99±0.00a |
物种数 Observed species | 2597.08±377.98a | 2742.98±140.21a |
Chao1 | 3065.85±325.88a | 3209.56±128.91a |
Shannon | 8.56±0.97a | 9.09±0.18a |
Simpson | 0.98±0.01a | 0.99±0.00a |
表2 抽薹与未抽薹当归根际土壤细菌群落的阿尔法多样性
Table 2 The alpha diversity of bacterial communities in rh-izosphere soil of bolting and unbolting A. sinensis
Alpha多样性 Alpha diversity | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
测序覆盖度 Goods coverage | 0.99±0.00a | 0.99±0.00a |
物种数 Observed species | 2597.08±377.98a | 2742.98±140.21a |
Chao1 | 3065.85±325.88a | 3209.56±128.91a |
Shannon | 8.56±0.97a | 9.09±0.18a |
Simpson | 0.98±0.01a | 0.99±0.00a |
图1 抽薹(BO)与未抽薹(UB)当归根际土壤细菌群落主成分分析
Fig. 1 Principal component analysis plots of the bacterial communities in the rhizosphere soils of bolting(BO)and unbolting(UB)A. sinensis
门 Phylum | 相对丰度 Relative abundance/% | 属 Genus | 相对丰度 Relative abundance/% | |||
---|---|---|---|---|---|---|
抽薹当归Bolting | 未抽薹当归Unbolting | 抽薹当归Bolting | 未抽薹当归Unbolting | |||
变形菌门Proteobacteria | 51.55±9.19a | 50.91±5.98a | 鞘氨醇单胞菌属Sphingomonas | 5.74±1.42a | 6.04±1.47a | |
放线菌门Actinobacteriota | 23.19±8.54a | 221.26±5.02a | 链霉菌属Streptomyces | 6.96±5.07a | 3.83±2.51a | |
拟杆菌门Bacteroidota | 12.00±2.38a | 12.07±0.69a | 假黄单胞菌属Pseudoxanthomonas | 3.74±4.75a | 1.83±0.52a | |
芽单胞菌门Gemmatimonadota | 5.65±2.58a | 6.50±2.12a | 原小单孢菌属Promicromonospora | 1.62±0.81a | 2.09±1.51a | |
厚壁菌门Firmicutes | 2.59±1.20a | 2.98±1.04a | MND1 | 1.63±0.77a | 1.58±0.87a | |
黏球菌门Myxococcota | 2.20±0.48a | 3.02±0.92a | 溶杆菌属Lysobacter | 1.58±0.73a | 1.54±0.26a | |
酸杆菌门Acidobacteriota | 0.98±0.65a | 1.11±0.46a | Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium | 2.00±3.26a | 1.07±0.70a | |
绿弯菌门Chloroflexi | 0.37±0.17a | 0.33±0.09a | Muribaculaceae | 1.32±0.57a | 1.69±0.58a | |
硝化螺旋菌门Nitrospirota | 0.23±0.24a | 0.37±0.32a | Nocardioides | 1.51±0.69a | 1.45±0.58a | |
蛭弧菌门Bdellovibrionota | 0.25±0.13a | 0.33±0.12a | Ellin6067 | 1.36±0.64a | 1.41±0.49a | |
疣微菌门Verrucomicrobiota | 0.21±0.10a | 0.20±0.09a | 大肠杆菌志贺菌属Escherichia-Shigella | 1.17±0.45a | 1.39±0.60a | |
脱硫菌门Desulfobacterota | 0.15±0.06a | 0.18±0.09a | 纤维弧菌属Cellvibrio | 2.22±4.62a | 0.29±0.15a | |
髌骨菌门Patescibacteria | 0.08±0.05a | 0.09±0.05a | 假单胞菌属Pseudomonas | 1.42±0.89a | 0.98±0.65a | |
弯曲杆菌门Campilobacterota | 0.06±0.02a | 0.07±0.03a | Sphingopyxis | 1.46±1.45a | 0.91±0.51a | |
迷踪菌门Elusimicrobiota | 0.07±0.04a | 0.06±0.04a | 0319-7L14 | 1.16±0.49a | 1.20±0.32a | |
其他Others | 0.41±0.16a | 0.54±0.14a | 其他Others | 65.10±9.97a | 72.71±3.83a |
表3 抽薹与未抽薹当归根际土壤细菌群落在门水平和属水平上的组成
Table 3 Composition of bacterial communities in the rhizosphere soil of bolting and unbolting A. sinensis at phylum and genus level
门 Phylum | 相对丰度 Relative abundance/% | 属 Genus | 相对丰度 Relative abundance/% | |||
---|---|---|---|---|---|---|
抽薹当归Bolting | 未抽薹当归Unbolting | 抽薹当归Bolting | 未抽薹当归Unbolting | |||
变形菌门Proteobacteria | 51.55±9.19a | 50.91±5.98a | 鞘氨醇单胞菌属Sphingomonas | 5.74±1.42a | 6.04±1.47a | |
放线菌门Actinobacteriota | 23.19±8.54a | 221.26±5.02a | 链霉菌属Streptomyces | 6.96±5.07a | 3.83±2.51a | |
拟杆菌门Bacteroidota | 12.00±2.38a | 12.07±0.69a | 假黄单胞菌属Pseudoxanthomonas | 3.74±4.75a | 1.83±0.52a | |
芽单胞菌门Gemmatimonadota | 5.65±2.58a | 6.50±2.12a | 原小单孢菌属Promicromonospora | 1.62±0.81a | 2.09±1.51a | |
厚壁菌门Firmicutes | 2.59±1.20a | 2.98±1.04a | MND1 | 1.63±0.77a | 1.58±0.87a | |
黏球菌门Myxococcota | 2.20±0.48a | 3.02±0.92a | 溶杆菌属Lysobacter | 1.58±0.73a | 1.54±0.26a | |
酸杆菌门Acidobacteriota | 0.98±0.65a | 1.11±0.46a | Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium | 2.00±3.26a | 1.07±0.70a | |
绿弯菌门Chloroflexi | 0.37±0.17a | 0.33±0.09a | Muribaculaceae | 1.32±0.57a | 1.69±0.58a | |
硝化螺旋菌门Nitrospirota | 0.23±0.24a | 0.37±0.32a | Nocardioides | 1.51±0.69a | 1.45±0.58a | |
蛭弧菌门Bdellovibrionota | 0.25±0.13a | 0.33±0.12a | Ellin6067 | 1.36±0.64a | 1.41±0.49a | |
疣微菌门Verrucomicrobiota | 0.21±0.10a | 0.20±0.09a | 大肠杆菌志贺菌属Escherichia-Shigella | 1.17±0.45a | 1.39±0.60a | |
脱硫菌门Desulfobacterota | 0.15±0.06a | 0.18±0.09a | 纤维弧菌属Cellvibrio | 2.22±4.62a | 0.29±0.15a | |
髌骨菌门Patescibacteria | 0.08±0.05a | 0.09±0.05a | 假单胞菌属Pseudomonas | 1.42±0.89a | 0.98±0.65a | |
弯曲杆菌门Campilobacterota | 0.06±0.02a | 0.07±0.03a | Sphingopyxis | 1.46±1.45a | 0.91±0.51a | |
迷踪菌门Elusimicrobiota | 0.07±0.04a | 0.06±0.04a | 0319-7L14 | 1.16±0.49a | 1.20±0.32a | |
其他Others | 0.41±0.16a | 0.54±0.14a | 其他Others | 65.10±9.97a | 72.71±3.83a |
图2 抽薹(BO)与未抽薹(UB)当归根际土壤细菌群落从门到属水平的响应 红色圆圈代表在抽薹当归根际土壤中相对丰度显著升高的菌群,绿色圆圈代表在未抽薹当归根际土壤中相对丰度显著升高的菌群。只有符合线性判别分析且显著性阈值为N3.0的菌群被显示出来并标注颜色
Fig. 2 Responses of the bacterial communities from phyla to genera in the rhizosphere soils of bolting(BO)and unbolting(UB)A. sinensis Red circles indicate taxa that are significantly abundant in bolting rhizosphere soils, while green circles indicate taxa that are significantly abundant in unbolting rhizosphere soil. Only taxa meeting a linear discriminant analysis significance threshold of N3.0 are shown and color-coded
图3 抽薹(BO)与未抽薹(UB)当归根际土壤代谢物类型(A)和主成分分析(B) 代谢物类别1:有机酸及其衍生物;2:有机氧化合物;3:脂质及类脂分子;4:苯环型化合物;5:有机杂环化合物;6:苯丙类和聚酮;7:核苷、核苷酸及类似物;8:有机氮化合物;9:均质非金属化合物;10:其他
Fig. 3 Metabolite type distribution(A)and the principal component analysis plots(B)of the rhizosphere soils metabolites of bolting(BO)and unbolting(UB)A. sinensis Metabolites type 1: Organic acids and derivatives; 2: organic oxygen compounds; 3: lipids and lipid-like molecules; 4: benzenoids; 5: organoheterocyclic compounds;6: phenylpropanoids and polyketides; 7: nucleosides, nucleotides, and analogues; 8: organic nitrogen compounds; 9: homogeneous non-metal compounds; 10: others
图4 抽薹(BO)vs未抽薹(UB)当归根际土壤代谢物变化 A:抽薹vs未抽薹当归根际土壤差异代谢物火山图;B:抽薹vs未抽薹当归各类差异代谢物变化(代谢物类别1:有机酸及其衍生物;2:有机氧化合物;3:脂质及类脂分子;4:苯环型化合物;5:有机杂环化合物;6:苯丙类和聚酮;7:有机氮化合物;8:其他);C:66种差异代谢物的组间变化热图;D:抽薹vs未抽薹当归差异代谢物富集通路气泡图
Fig. 4 Changes of metabolites in the rhizosphere soils between bolting(BO)and unbolting(UB)A. sinensis A: Volcano plot of differentially metabolites in BO vs UB. B: Changes of different metabolites in BO vs UB(Metabolites type 1: organic acids and derivatives; 2: organic oxygen compounds; 3: lipids and lipid-like molecules; 4: benzenoids; 5: organoheterocyclic compounds; 6: phenylpropanoids and polyketides; 7: organic nitrogen compounds;8: others). C: Heat map of 66 differential metabolites between BO and UB. D: Bubble diagram of metabolic pathways that are significantly different in the rhizosphere soils in BO vs UB A. sinensis
图5 抽薹(BO)与未抽薹(UB)当归根际土壤理化指标与差异细菌属(A)、土壤理化性质与差异代谢物(B)、差异细菌属与差异代谢物(C)的冗余分析
Fig. 5 RDA analysis of soil properties and different bacterial genus(A), soil properties and different metabolites(B), different bacterial genus and metabolites(C)between bolting(BO)and unbolting(UB)A. sinensis
代谢通路 Metabolic pathway | 差异代谢物 Different metabolites | 表达量 Expression amount | Phaselicystis | Rubellimicrobium | 硝态氮 Nitrate nitrogen |
---|---|---|---|---|---|
氨基苯甲酸酯降解 Aminobenzoate degradation | 没食子酸Gallic acid | 上调 | -0.851*** | -0.741** | 0.234 |
1,2,3-三羟基苯1,2,3-trihydroxybenzene | 上调 | -0.702* | -0.503 | 0.055 | |
氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 | |
4-硝基苯酚4-nitrophenol | 上调 | -0.691* | -0.662* | 0.517 | |
1,2,4-苯三醇1,2,4-benzenetriol | 上调 | -0.735** | -0.574 | 0.010 | |
4-氨基苯酚4-aminophenol | 上调 | -0.751** | -0.567 | 0.385 | |
丁香酸Syringic acid | 下调 | 0.414 | 0.167 | -0.267 | |
苯丙氨酸代谢 Phenylalanine metabolism | 氢化肉桂酸Hydrocinnamic acid | 上调 | -0.789** | -0.556 | -0.021 |
苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.654* | -0.572 | 0.292 | |
马嘌呤酸Hippuric acid | 上调 | -0.534 | -0.790** | 0.404 | |
苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | 莽草酸Shikimic acid | 下调 | 0.340 | 0.775** | -0.223 |
奎宁酸Quinic acid | 上调 | -0.771** | -0.529 | -0.056 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
不饱和脂肪酸的生物合成 Biosynthesis of unsaturated fatty acids | 四糖酸Tetracosanoic acid | 下调 | 0.585* | 0.362 | -0.470 |
苯甲酸Behenic acid | 下调 | 0.568 | 0.355 | -0.587* | |
花生酸Arachidic acid | 下调 | 0.462 | 0.317 | -0.572* | |
苯乙烯降解 Styrene degradation | 苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572 | 0.292 | |
酪氨酸代谢 Tyrosine metabolism | 氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572* | 0.292 | |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | 吡咯-2-羧酸Pyrrole-2-carboxylic acid | 上调 | -0.820** | -0.737** | 0.083 |
肌酐Creatinine | 上调 | -0.830*** | -0.741** | 0.238 | |
反式-4-羟基-1-脯氨酸Trans-4-hydroxy-l-proline | 上调 | -0.718** | -0.840*** | 0.285 |
表4 主要代谢通路中差异代谢物与Phaselicystis、Rubellimicrobium、硝态氮含量的相关性
Table 4 Correlation between differential metabolites in main metabolic pathways and Phaselicystis, Rubellimicrobium and nitrate nitrogen
代谢通路 Metabolic pathway | 差异代谢物 Different metabolites | 表达量 Expression amount | Phaselicystis | Rubellimicrobium | 硝态氮 Nitrate nitrogen |
---|---|---|---|---|---|
氨基苯甲酸酯降解 Aminobenzoate degradation | 没食子酸Gallic acid | 上调 | -0.851*** | -0.741** | 0.234 |
1,2,3-三羟基苯1,2,3-trihydroxybenzene | 上调 | -0.702* | -0.503 | 0.055 | |
氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 | |
4-硝基苯酚4-nitrophenol | 上调 | -0.691* | -0.662* | 0.517 | |
1,2,4-苯三醇1,2,4-benzenetriol | 上调 | -0.735** | -0.574 | 0.010 | |
4-氨基苯酚4-aminophenol | 上调 | -0.751** | -0.567 | 0.385 | |
丁香酸Syringic acid | 下调 | 0.414 | 0.167 | -0.267 | |
苯丙氨酸代谢 Phenylalanine metabolism | 氢化肉桂酸Hydrocinnamic acid | 上调 | -0.789** | -0.556 | -0.021 |
苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.654* | -0.572 | 0.292 | |
马嘌呤酸Hippuric acid | 上调 | -0.534 | -0.790** | 0.404 | |
苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | 莽草酸Shikimic acid | 下调 | 0.340 | 0.775** | -0.223 |
奎宁酸Quinic acid | 上调 | -0.771** | -0.529 | -0.056 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
不饱和脂肪酸的生物合成 Biosynthesis of unsaturated fatty acids | 四糖酸Tetracosanoic acid | 下调 | 0.585* | 0.362 | -0.470 |
苯甲酸Behenic acid | 下调 | 0.568 | 0.355 | -0.587* | |
花生酸Arachidic acid | 下调 | 0.462 | 0.317 | -0.572* | |
苯乙烯降解 Styrene degradation | 苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572 | 0.292 | |
酪氨酸代谢 Tyrosine metabolism | 氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572* | 0.292 | |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | 吡咯-2-羧酸Pyrrole-2-carboxylic acid | 上调 | -0.820** | -0.737** | 0.083 |
肌酐Creatinine | 上调 | -0.830*** | -0.741** | 0.238 | |
反式-4-羟基-1-脯氨酸Trans-4-hydroxy-l-proline | 上调 | -0.718** | -0.840*** | 0.285 |
[1] |
Wei WL, Zeng R, Gu CM, et al. Angelica sinensis in China-a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis[J]. J Ethnopharmacol, 2016, 190: 116-141.
doi: 10.1016/j.jep.2016.05.023 URL |
[2] | 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 139. |
Committee for the Pharmacopoeia of PR China. People's republic of China(PRC)pharmacopoeia-part I: 2020 edition[M]. Beijing: Chinese Medical Science and Technology Press, 2020: 139. | |
[3] | 谢田朋, 柳娜, 王雅莉, 等. 不同产地当归品质的研究进展[J]. 中医药学报, 2020, 48(1): 72-75. |
Xie TP, Liu N, Wang YL, et al. Quality research progress of Angelica sinensis from different regions[J]. Acta Chin Med Pharmacol, 2020, 48(1): 72-75. | |
[4] | 顾志荣, 师富贵, 王永琦, 等. 不同产地当归药材质量研究进展[J]. 甘肃中医学院学报, 2014, 31(5): 80-83. |
Gu ZR, Shi FG, Wang YQ, et al. Research progress on quality of Angelica sinensis from different habitats[J]. J Gansu Coll Tradit Chin Med, 2014, 31(5): 80-83. | |
[5] | 冯慧敏, 李玥, 罗旭东, 等. 当归化学成分和药理作用研究进展及质量标志物的预测分析[J]. 中华中医药学刊, 2022, 40(4): 159-166. |
Feng HM, Li Y, Luo XD, et al. Research progress on chemical constituents and pharmacological effects of Danggui(Radix Angelica sinensis)and prediction analysis on its quality markers[J]. Chin Arch Tradit Chin Med, 2022, 40(4): 159-166. | |
[6] | Wang LY, Tang YP, Liu X, et al. Effects of ferulic acid on antioxidant activity in Angelica sinensis Radix, Chuanxiong Rhizoma, and their combination[J]. Chin J Nat Med, 2015, 13(6): 401-408. |
[7] |
Zhou WJ, Wang S, Hu Z, et al. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation[J]. Biochem Biophys Res Commun, 2015, 467(3): 562-569.
doi: 10.1016/j.bbrc.2015.09.145 URL |
[8] | 晋玲. 当归生产加工适宜技术[M]. 北京: 中国医药科技出版社, 2018: 1-14. |
Jin L. Suitable technology for production and processing of Angelica sinensis[M]. Beijing: China Pharmaceutical Science and Technology Press, 2018: 1-14. | |
[9] |
王文丽, 李娟, 赵旭. 生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响[J]. 应用生态学报, 2019, 30(8): 2813-2821.
doi: 10.13287/j.1001-9332.201908.030 |
Wang WL, Li J, Zhao X. Effects of biological organic fertilizer on rhisosphere soil bacteria community and root rot diseases of continuous cropping Angelica sinensis[J]. Chin J Appl Ecol, 2019, 30(8): 2813-2821. | |
[10] |
谢田朋, 柳娜, 刘越敏, 等. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0467 |
Xie TP, Liu N, Liu YM, et al. Effects of chemical fertilizer reduction and application of plant growth regulators from traditional Chinese medicine on the quality and its bacterial community in rhizosphere soil of Angelica sinensis[J]. Biotechnol Bull, 2022, 38(3): 79-91. | |
[11] | 栗孟飞, 康天兰, 晋玲, 等. 当归抽薹开花及其调控途径研究进展[J]. 中草药, 2020, 51(22): 5894-5899. |
Li MF, Kang TL, Jin L, et al. Research progress on bolting and flowering of Angelica sinensis and regulation pathways[J]. Chin Tradit Herb Drugs, 2020, 51(22): 5894-5899. | |
[12] |
Liu XX, Luo MM, Li MF, et al. Depicting precise temperature and duration of vernalization and inhibiting early bolting and flowering of Angelica sinensis by freezing storage[J]. Front Plant Sci, 2022, 13: 853444.
doi: 10.3389/fpls.2022.853444 URL |
[13] |
邱黛玉, 蔺海明, 陈垣, 等. 经纬度和海拔对当归成药期植株长势和早期抽薹的影响[J]. 草地学报, 2010, 18(6): 838-843.
doi: 10.11733/j.issn.1007-0435.2010.06.016 |
Qiu DY, Lin HM, Chen Y, et al. Effects of latitude, longitude and altitude on Angelica growth and early bolting in medicine formation period[J]. Acta Agrestia Sin, 2010, 18(6): 838-843. | |
[14] | 邱黛玉, 蔺海明, 方子森, 等. 种苗大小对当归成药期早期抽薹和生理变化的影响[J]. 草业学报, 2010, 19(6): 100-105. |
Qiu DY, Lin HM, Fang ZS, et al. Effects of seedlings with different root diameters on Angelica sinensis early bolting and physiological changes during the medicine formation period[J]. Acta Prataculturae Sin, 2010, 19(6): 100-105. | |
[15] | 武延安, 刘效瑞, 曹占凤, 等. 日光温室冬季育苗抑制当归早期抽薹的效应研究[J]. 中国中药杂志, 2010, 35(3): 283-287. |
Wu YA, Liu XR, Cao ZF, et al. Inhibition of winter seedling raising in green house of premature bolting in Angelica sinensis[J]. China J Chin Mater Med, 2010, 35(3): 283-287. | |
[16] | 谢田朋, 张建, 柳娜, 等. 当归不同生长时期根际土壤酶活性及微生物群落结构变化[J]. 土壤通报, 2023, 54(1):138-150. |
Xie TP, Zhang J, Liu N, et al. Changes in rhizosphere soil enzymatic activities and microbial communities across growth stages of Angelica sinensis[J]. Chin J Soil Sci, 2023, 54(1):138-150. | |
[17] |
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions[J]. Ann Microbiol, 2019, 69(4): 307-320.
doi: 10.1007/s13213-019-01448-9 |
[18] |
Lu T, Ke MJ, Lavoie M, et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome, 2018, 6(1): 231.
doi: 10.1186/s40168-018-0615-0 pmid: 30587246 |
[19] |
Singh BK, Bardgett RD, Smith P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nat Rev Microbiol, 2010, 8(11): 779-790.
doi: 10.1038/nrmicro2439 pmid: 20948551 |
[20] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. Beijing: China Agriculture Scientech Press, 2000. | |
[21] | 巩晓芳, 祝英, 彭轶楠, 等. 当归不同生长时期根际丛枝真菌分布及土壤养分和酶活性的动态变化[J]. 微生物学通报, 2017, 44(11): 2596-2605. |
Gong XF, Zhu Y, Peng YN, et al. Dynamics of arbuscular mycorrhizal fungi distributions, soil nutrients and enzyme activities in rhizosphere soil at different growth stages of Angelica sinensis[J]. Microbiol China, 2017, 44(11): 2596-2605. | |
[22] |
张宵娟, 邓光华, 喻苏琴, 等. 氮对千日红试管苗生长和开花诱导的影响[J]. 草业学报, 2015, 24(1): 56-63.
doi: 10.11686/cyxb20150108 |
Zhang XJ, Deng GH, Yu SQ, et al. Effects of nitrogen on growth and flowering of test-tube plantlets of Gomphrena globosa[J]. Acta Prataculturae Sin, 2015, 24(1): 56-63. | |
[23] |
Gao YY, Qi SD, Wang Y. Nitrate signaling and use efficiency in crops[J]. Plant Commun, 2022, 3(5): 100353.
doi: 10.1016/j.xplc.2022.100353 URL |
[24] |
Fan K, Fan DM, Su Y, et al. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant(Camellia sinensis L.)[J]. Plant Physiol Biochem, 2015, 97: 350-360.
doi: 10.1016/j.plaphy.2015.10.026 URL |
[25] |
Bao YY, Dolfing J, Guo ZY, et al. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils[J]. Microbiome, 2021, 9(1): 84.
doi: 10.1186/s40168-021-01032-x pmid: 33827695 |
[26] | Peng JJ, Oladele O, Song XT, et al. Opportunities and approaches for manipulating soil-plant microbiomes for effective crop nitrogen use in agroecosystems[J]. Front Agr Sci Eng, 2022, 9(3): 333-343. |
[27] | 蔡雨衡, 向斯, 程凯. 氨氮对3种吸附态亚硝化单胞菌的抑制动力学[J]. 微生物学通报, 2021, 48(11): 3996-4005. |
Cai YH, Xiang S, Cheng K. The NH3-N inhibition kinetics of 3 Nitrosomonas at adhesive status[J]. Microbiol China, 2021, 48(11): 3996-4005. | |
[28] |
Cheng N, Peng YJ, Kong YL, et al. Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize(Zea mays L.) seedlings[J]. Plant Soil, 2018, 433(1): 19-35.
doi: 10.1007/s11104-018-3811-6 |
[29] |
Song Y, Li X, Yao S, et al. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation[J]. Sci Total Environ, 2020, 728: 138439.
doi: 10.1016/j.scitotenv.2020.138439 URL |
[30] |
Pang ZQ, Chen J, Wang TH, et al. Linking plant secondary metabolites and plant microbiomes: a review[J]. Front Plant Sci, 2021, 12: 621276.
doi: 10.3389/fpls.2021.621276 URL |
[31] | Garcia R, Müller R. The family phaselicystidaceae[M]// Rosenberg E, DeLong EF, Lory S, et al. The Prokaryotes. Berlin: The Springer-Verlag Press, 2014: 239-245. |
[32] | 赵文慧, 马垒, 徐基胜, 等. 秸秆与木本泥炭短期施用对潮土有机质及微生物群落组成和功能的影响[J]. 土壤学报, 2020, 57(1): 153-164. |
Zhao WH, Ma L, Xu JS, et al. Effect of application of straw and wood peat for a short period on soil organic matter and microbial community in composition and function in fluvo-aquic soil[J]. Acta Pedol Sin, 2020, 57(1): 153-164. |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[3] | 赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195. |
[4] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[5] | 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. |
[6] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[7] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[8] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[9] | 张雅静, 宋美燕, 张怡静, 房庆, 杨俊, 彭德良, 黄文坤, 彭焕, 朱英波, 孔令安. 兼防黄瓜根腐病和根结线虫病的淡紫拟青霉和哈茨木霉的筛选[J]. 生物技术通报, 2021, 37(2): 40-50. |
[10] | 罗亚军, 孙红敏, 何宁, 袁丽杰, 解云英. 西藏沙棘根瘤及根际土壤放线菌分离及抗菌活性研究[J]. 生物技术通报, 2021, 37(11): 225-236. |
[11] | 张淼, 陈裕凤, 陈龙, 黄飘玲, 韦露玲. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J]. 生物技术通报, 2020, 36(9): 167-179. |
[12] | 张萌, 罗芳, 王敏, 武彦泽, 王俊奎, 和东迁, 陈丽尧, 陶金忠. 奶牛分娩后早期血浆代谢物变化研究[J]. 生物技术通报, 2020, 36(6): 191-199. |
[13] | 许广, 王梦姣, 邓百万, 郭苗苗. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132. |
[14] | 兰青阔, 赵新, 沈晓玲, 魏静娜, 刘双, 陈锐, 檀建新, 王永. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11): 222-229. |
[15] | 刘纪爱, 束爱萍, 刘光荣, 李祖章, 刘增兵, 高峥. 施肥影响土壤性状和微生物组的研究进展[J]. 生物技术通报, 2019, 35(9): 21-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||