生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 37-47.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0132
张蓓(), 任福森(), 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰
收稿日期:
2023-02-15
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
任福森,男,副研究员,研究方向:蔬菜育种;E-mail: renfusen@126.com作者简介:
张蓓,女,硕士研究生,研究实习员,研究方向:蔬菜种质资源与遗传育种;E-mail: 1141209419@qq.com
基金资助:
ZHANG Bei(), REN Fu-sen(), ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie
Received:
2023-02-15
Published:
2023-07-26
Online:
2023-08-17
摘要:
辣椒是重要的蔬菜作物和调味品,含有丰富的营养物质。然而,高温制约了辣椒的生长发育,严重影响其产量和品质。因此,研究热胁迫响应机制从而培育具有较强耐热能力的辣椒品种具有重要意义。本文从生理生化机制、分子机制、组学机制的角度详细阐述了辣椒热胁迫响应机制的研究进展,并对其中存在的问题及今后的研究方向进行了探讨,旨在推动解析辣椒的耐热机制和耐热品种选育进程。
张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47.
ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress[J]. Biotechnology Bulletin, 2023, 39(7): 37-47.
[1] |
Gao CL, Mumtaz MA, Zhou Y, et al. Integrated transcriptomic and metabolomic analyses of cold-tolerant and cold-sensitive pepper species reveal key genes and essential metabolic pathways involved in response to cold stress[J]. Int J Mol Sci, 2022, 23(12): 6683.
doi: 10.3390/ijms23126683 URL |
[2] |
Venier NA, Colquhoun AJ, Sasaki H, et al. Capsaicin: a novel radio-sensitizing agent for prostate cancer[J]. Prostate, 2015, 75(2): 113-125.
doi: 10.1002/pros.22896 pmid: 25307418 |
[3] | 王立浩, 张宝玺, 张正海, 等. “十三五”我国辣椒育种研究进展、产业现状及展望[J]. 中国蔬菜, 2021(2): 21-29. |
Wang LH, Zhang BX, Zhang ZH, et al. Status in breeding and production of Capsicum spp. in China during‘the thirteenth five-year plan’Period and future prospect[J]. China Veg, 2021(2): 21-29. | |
[4] |
Gao LL, Ma YZ, Wang P, et al. Transcriptome profiling of Clematis apiifolia: insights into heat-stress responses[J]. DNA Cell Biol, 2017, 36(11): 938-946.
doi: 10.1089/dna.2017.3850 URL |
[5] |
Mayer MP. The unfolding story of a redox chaperone[J]. Cell, 2012, 148(5): 843-844.
doi: 10.1016/j.cell.2012.02.029 pmid: 22385952 |
[6] |
Guo M, Yin YX, Ji JJ, et al. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper(Capsicum annuum L.)[J]. Genet Mol Res, 2014, 13(1): 1865-1875.
doi: 10.4238/2014.March.17.14 pmid: 24668674 |
[7] |
Wang J, Lv JH, Liu ZB, et al. Integration of transcriptomics and metabolomics for pepper(Capsicum annuum L.) in response to heat stress[J]. Int J Mol Sci, 2019, 20(20): 5042.
doi: 10.3390/ijms20205042 URL |
[8] |
Shi HT, Tan DX, Reiter RJ, et al. Melatonin induces class A1 heat-shock factors(HSFA1s)and their possible involvement of thermotolerance in Arabidopsis[J]. J Pineal Res, 2015, 58(3): 335-342.
doi: 10.1111/jpi.12219 URL |
[9] |
Tian XJ, Wang F, Zhao Y, et al. Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway[J]. Plant Biotechnol J, 2020, 18(5): 1109-1111.
doi: 10.1111/pbi.v18.5 URL |
[10] |
Zhang ZZ, Lan MF, Han XY, et al. Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature[J]. J Plant Growth Regul, 2020, 39(1): 133-146.
doi: 10.1007/s00344-019-09969-y |
[11] | Tejinder P, Navita G, Jindal SK. Ameliorating thermo-tolerance in bell pepper(Capsicum annuum L. var. grossum)with plant growth regulators[J]. Vegetable Science, 2021, 47(2): 213-218. |
[12] |
Kaur S, Ghai N, Jindal SK. Improvement of growth characteristics and fruit set in bell pepper(Capsicum annuum L.) through IAA application[J]. Indian J Plant Physiol, 2017, 22(2): 213-220.
doi: 10.1007/s40502-017-0293-0 URL |
[13] |
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends Plant Sci, 2015, 20(4): 219-229.
doi: 10.1016/j.tplants.2015.02.001 pmid: 25731753 |
[14] |
Otálora G, Piñero MC, Collado-González J, et al. Heat-shock and methyl-jasmonate: the cultivar-specific responses of pepper plants[J]. Front Plant Sci, 2022, 13: 1014230.
doi: 10.3389/fpls.2022.1014230 URL |
[15] | 刘凯歌, 朱月林, 郝婷, 等. 叶面喷施6-BA对高温胁迫下甜椒幼苗生长和叶片生理生化指标的影响[J]. 西北植物学报, 2014, 34(12): 2508-2514. |
Liu KG, Zhu YL, Hao T, et al. Effect of foliar-spraying 6-BA on the growth and physiological and biochemical indexes of sweet pepper seedlings under high temperature stress[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(12): 2508-2514. | |
[16] |
Choudhury FK, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. Plant J, 2017, 90(5): 856-867.
doi: 10.1111/tpj.2017.90.issue-5 URL |
[17] |
Srivastava A, Singh K, Khar A, et al. Morphological, biochemical and molecular insights on responses to heat stress in chilli[J]. Indian J Hortic, 2022, 79(1): 15-22.
doi: 10.5958/0974-0112.2022.00003.2 URL |
[18] | 马宝鹏, 逯明辉, 巩振辉. 辣椒幼苗对高温胁迫的生长生理响应[J]. 西北农林科技大学学报: 自然科学版, 2013, 41(10): 112-118. |
Ma BP, Lu MH, Gong ZH. Responses of growth and physiology of pepper(Capsicum annuumL.) seedlings to high temperature stress[J]. J Northwest A F Univ, 2013, 41(10): 112-118. | |
[19] | 王静. 辣椒种质资源耐热性评价及其对高温胁迫响应机制的研究[D]. 长沙: 湖南大学, 2021. |
Wang J. Evaluation of heat resistance of pepper resources and its response mechanism to heat stress[D]. Changsha: Hunan University, 2021. | |
[20] |
Niu Y, Xiang Y. An overview of biomembrane functions in plant responses to high-temperature stress[J]. Front Plant Sci, 2018, 9: 915.
doi: 10.3389/fpls.2018.00915 pmid: 30018629 |
[21] |
Sadura I, Janeczko A. Brassinosteroids and the tolerance of cereals to low and high temperature stress: photosynthesis and the physicochemical properties of cell membranes[J]. Int J Mol Sci, 2021, 23(1): 342.
doi: 10.3390/ijms23010342 URL |
[22] | 贾志银. 辣椒耐热生理生化特性及谷胱甘肽处理效应研究[D]. 杨凌: 西北农林科技大学, 2010. |
Jia ZY. Physiological and biochemical characteristics of pepperin heat resistance and the effects of glutathione on pepper[D]. Yangling: Northwest A & F University, 2010. | |
[23] |
Lv WT, Lin B, Zhang M, et al. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress[J]. Plant Physiol, 2011, 156(4): 1921-1933.
doi: 10.1104/pp.111.175810 URL |
[24] |
Kavi Kishor PB, Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?[J]. Plant Cell Environ, 2014, 37(2): 300-311.
doi: 10.1111/pce.2014.37.issue-2 URL |
[25] | 何铁光, 董文斌, 王爱勤, 等. 高温胁迫下辣椒生理生化响应机理初步探讨[J]. 西南农业学报, 2013, 26(2): 541-544. |
He TG, Dong WB, Wang AQ, et al. Studies on physiological and biochemical response mechanism to high temperature stress in pepper seedlings with different heat tolerance[J]. Southwest China J Agric Sci, 2013, 26(2): 541-544. | |
[26] |
Rajametov SN, Yang EY, Cho MC, et al. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition[J]. Sci Rep, 2021, 11(1): 14328.
doi: 10.1038/s41598-021-93697-5 pmid: 34253784 |
[27] | 张宗申, 利容千, 王建波. 外源Ca2+预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、AsA含量及Ca2+分布的影响[J]. 植物生态学报, 2001, 25(2): 230-234, 262. |
Zhang ZS, Li RQ, Wang JB. Effects of Ca2+ pretreatment on plasmalemma permeability, GSH and AsA contents, and calcium distribution in pepper mesophyll cells under heat stress[J]. Acta Phytoecol Sin, 2001, 25(2): 230-234, 262. | |
[28] | 孙克香, 杨莎, 郭峰, 等. 高温强光胁迫下外源钙对甜椒(Capsicum fructescens L.)幼苗光合生理特性的影响[J]. 植物生理学报, 2015, 51(3): 280-286. |
Sun KX, Yang S, Guo F, et al. Effects of exogenous calcium on photosynthetic chracteristics of sweet pepper(Capsicum fructescens L.) seedlings[J]. Plant Physiol J, 2015, 51(3): 280-286. | |
[29] |
邓娇燕, 黄斌, 吕立军, 等. 叶面喷施1-MCP缓解辣椒幼苗高温伤害的机理研究[J]. 园艺学报, 2019, 46(5): 891-900.
doi: 10.16420/j.issn.0513-353x.2018-0858 |
Deng JY, Huang B, Lv LJ, et al. Mechanisms of foliar-spraying 1-MCP to alleviate injury of pepper seedlings caused by high temperature[J]. Acta Hortic Sin, 2019, 46(5): 891-900.
doi: 10.16420/j.issn.0513-353x.2018-0858 |
|
[30] |
Haghighi M, Ramezani MR, Rajaii N. Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium[J]. Mol Biol Rep, 2019, 46(1): 497-503.
doi: 10.1007/s11033-018-4502-3 pmid: 30484109 |
[31] | 孟清波, 张谨薇, 马万成, 等. 叶面喷施沼液肥对高温胁迫下辣椒幼苗生长及生理特性的影响[J]. 中国瓜菜, 2020, 33(8): 32-36. |
Meng QB, Zhang JW, Ma WC, et al. Effects of leaf spraying biogas slurry fertilizer on the growth and physiological characteristics of pepper seedlings under high temperature stress[J]. China Cucurbits Veg, 2020, 33(8): 32-36. | |
[32] | Guo M, Liu JH, Ma X, et al. The plant heat stress transcription factors(HSFs): structure, regulation, and function in response to abiotic stresses[J]. Front Plant Sci, 2016, 7: 114. |
[33] |
Guo M, Lu JP, Zhai YF, et al. Genome-wide analysis, expression profile of heat shock factor gene family(CaHsfs)and characterisation of CaHsfA2 in pepper(Capsicum annuum L.)[J]. BMC Plant Biol, 2015, 15: 151.
doi: 10.1186/s12870-015-0512-7 URL |
[34] | 郭猛. 辣椒热胁迫相关基因表达分析及功能研究[D]. 杨凌: 西北农林科技大学, 2016. |
Guo M. Expression analysis and functional study of heat stress related genes in pepper[D]. Yangling: Northwest A & F University, 2016. | |
[35] |
Gai WX, Ma X, Li Y, et al. CaHsfA1d improves plant thermotolerance via regulating the expression of stress- and antioxidant-related genes[J]. Int J Mol Sci, 2020, 21(21): 8374.
doi: 10.3390/ijms21218374 URL |
[36] | Ashraf MF, Yang S, Wu RJ, et al. Capsicum annuum HsfB2a positively regulates the response to Ralstonia solanacearum infection or high temperature and high humidity forming transcriptional cascade with CaWRKY6 and CaWRKY40[J]. Plant Cell Physiol, 2018, 59(12): 2608-2623. |
[37] |
Cai WW, Yang S, Wu RJ, et al. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses[J]. Plant Physiol, 2021, 186(4): 2169-2189.
doi: 10.1093/plphys/kiab190 URL |
[38] | 江海燕, 杜菊花, 毛恋, 等. 植物响应高温胁迫转录因子研究进展[J]. 分子植物育种, 2020, 18(10): 3251-3258. |
Jiang HY, Du JH, Mao L, et al. Summary of transcription factors in response to high temperature stress in plants[J]. Mol Plant Breed, 2020, 18(10): 3251-3258. | |
[39] |
Cai HY, Yang S, Yan Y, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper[J]. J Exp Bot, 2015, 66(11): 3163-3174.
doi: 10.1093/jxb/erv125 URL |
[40] |
Dang FF, Wang YN, Yu L, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection[J]. Plant Cell Environ, 2013, 36(4): 757-774.
doi: 10.1111/pce.2013.36.issue-4 URL |
[41] | 刘彩玲. CaWRKY17及其与CaWRKY40互作在辣椒应答高温高湿或青枯菌侵染中的作用[D]. 福州: 福建农林大学, 2017. |
Liu CL. The role of CaWRKY17 and its interaction with CaWRKY40 in peppers’ response to high-temperature-high-humidity or Ralstonia solanacearum inoculation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. | |
[42] |
Dang FF, Lin JH, Xue BP, et al. CaWRKY27 negatively regulates H2O2-mediated thermotolerance in pepper(Capsicum annuum)[J]. Front Plant Sci, 2018, 9: 1633.
doi: 10.3389/fpls.2018.01633 URL |
[43] |
Yang S, Cai WW, Shen L, et al. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper[J]. New Phytol, 2022, 233(4): 1843-1863.
doi: 10.1111/nph.v233.4 URL |
[44] | 姬俏华. CaWRKY20在辣椒应答青枯菌侵染和高温胁迫中的作用[D]. 延安: 延安大学, 2020. |
Ji QH. Role of CaWRKY20 in response to Ralstonia solanacearum infection and high temperature stress in pepper[D]. Yan'an: Yan'an University, 2020. | |
[45] | 刁玄章. 辣椒CaWRKY8基因克隆及表达分析的研究[D]. 凤阳县: 安徽科技学院, 2019. |
Diao XZ. Cloning and expression analysis of CaWRKY8 gene in pepper[D]. Fengyang: Anhui Science and Technology University, 2019. | |
[46] | 王倩倩, 刁卫平, 潘宝贵, 等. 辣椒CaWRKY14转录因子的生物学特性研究[J]. 西北植物学报, 2020, 40(9): 1498-1504. |
Wang QQ, Diao WP, Pan BG, et al. Biological characteristics of CaWRKY14 transcription factor in pepper[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(9): 1498-1504. | |
[47] |
Diao WP, Snyder JC, Wang SB, et al. Genome-wide analyses of the NAC transcription factor gene family in pepper(Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, Cis-elements in the promoter, and interaction network[J]. Int J Mol Sci, 2018, 19(4): 1028.
doi: 10.3390/ijms19041028 URL |
[48] | 吴荡, 刁卫平, 王述彬, 等. 辣椒CaNAC55基因克隆与表达分析[J]. 西北植物学报, 2021, 41(7): 1120-1126. |
Wu D, Diao WP, Wang SB, et al. Cloning and expression analysis of CaNAC55 gene in pepper[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(7): 1120-1126. | |
[49] | 胡慧芳, 王子雨, 潘潇潇, 等. 辣椒转录因子CaNAC083对高温胁迫的响应[J]. 西北农林科技大学学报: 自然科学版, 2023, 51(3): 121-131. |
Hu HF, Wang ZY, Pan XX, et al. Response of pepper transcription factor CaNAC083 to high temperature stress[J]. J Northwest A F Univ, 2023, 51(3): 121-131. | |
[50] |
Shen L, Liu ZQ, Yang S, et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40[J]. J Exp Bot, 2016, 67(8): 2439-2451.
doi: 10.1093/jxb/erw069 pmid: 26936828 |
[51] |
Noman A, Hussain A, Ashraf MF, et al. CabZIP53 is targeted by CaWRKY40 and act as positive regulator in pepper defense against Ralstonia solanacearum and thermotolerance[J]. Environ Exp Bot, 2019, 159: 138-148.
doi: 10.1016/j.envexpbot.2018.12.017 |
[52] |
Noman A, Liu ZQ, Yang S, et al. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity[J]. Microb Pathog, 2018, 118: 336-346.
doi: 10.1016/j.micpath.2018.03.044 URL |
[53] |
刘瑞瑶, 黄国弘, 李海艳, 等. 辣椒CaHsfA2上游转录因子的筛选及耐热功能分析[J]. 中国农业科学, 2022, 55(16): 3200-3209.
doi: 10.3864/j.issn.0578-1752.2022.16.011 |
Liu RY, Huang GH, Li HY, et al. Screening and functional analysis in heat-tolerance of the upstream transcription factors of pepper CaHsfA2[J]. Sci Agric Sin, 2022, 55(16): 3200-3209. | |
[54] |
Zhang ZS, Chen J, Liang CL, et al. Genome-wide identification and characterization of the bHLH transcription factor family in pepper(Capsicum annuum L.)[J]. Front Genet, 2020, 11: 570156.
doi: 10.3389/fgene.2020.570156 URL |
[55] |
郑忠凡, 张亚利, 胡灿, 等. 辣椒全基因组中LBD转录因子的鉴定与表达分析[J]. 园艺学报, 2016, 43(4): 683-694.
doi: 10.16420/j.issn.0513-353x.2015-0971 |
Zheng ZF, Zhang YL, Hu C, et al. Genome-wide identification and expressing analysis of LBD transcription factors in pepper[J]. Acta Hortic Sin, 2016, 43(4): 683-694. | |
[56] | Wu ZM, Cheng JW, Cui JJ, et al. Genome-wide identification and expression profile of dof transcription factor gene family in pepper(Capsicum annuum L.)[J]. Front Plant Sci, 2016, 7: 574. |
[57] |
Haq SU, Khan A, Ali M, et al. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses[J]. Int J Mol Sci, 2019, 20(21): 5321.
doi: 10.3390/ijms20215321 URL |
[58] | Guo M, Liu JH, Lu JP, et al. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress[J]. Front Plant Sci, 2015, 6: 806. |
[59] |
Feng XH, Zhang HX, Ali M, et al. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper(Capsicum annuum L.)[J]. Plant Physiol Biochem, 2019, 142: 151-162.
doi: 10.1016/j.plaphy.2019.07.001 URL |
[60] |
Huang LJ, Cheng GX, Khan A, et al. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance[J]. Protoplasma, 2019, 256(1): 39-51.
doi: 10.1007/s00709-018-1280-7 |
[61] |
Sun JT, Cheng GX, Huang LJ, et al. Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper(Capsicum annuum L.)[J]. Sci Hortic, 2019, 249: 364-373.
doi: 10.1016/j.scienta.2019.02.008 URL |
[62] |
Guo M, Liu JH, Ma X, et al. Genome-wide analysis of the Hsp70 family genes in pepper(Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Sci, 2016, 252: 246-256.
doi: 10.1016/j.plantsci.2016.07.001 URL |
[63] |
Guo M, Zhai YF, Lu JP, et al. Characterization of CaHsp70-1, a pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L[J]. Int J Mol Sci, 2014, 15(11): 19741-19759.
doi: 10.3390/ijms151119741 URL |
[64] |
Wang H, Niu HH, Zhai YF, et al. Characterization of BiP genes from pepper(Capsicum annuum L.) and the role of CaBiP1 in response to endoplasmic reticulum and multiple abiotic stresses[J]. Front Plant Sci, 2017, 8: 1122.
doi: 10.3389/fpls.2017.01122 pmid: 28702041 |
[65] |
Haq SU, Khan A, Ali M, et al. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper(Capsicum annuum L.)[J]. Planta, 2019, 250(6): 2127-2145.
doi: 10.1007/s00425-019-03290-4 |
[66] |
王静, 谭放军, 梁成亮, 等. 辣椒热激蛋白HSP90家族基因鉴定及分析[J]. 园艺学报, 2020, 47(4): 665-674.
doi: 10.16420/j.issn.0513-353x.2019-0470 |
Wang J, Tan FJ, Liang CL, et al. Genome-wide identification and analysis of HSP90 gene family in pepper[J]. Acta Hortic Sin, 2020, 47(4): 665-674.
doi: 10.16420/j.issn.0513-353x.2019-0470 |
|
[67] |
Lin L, Wu J, Jiang MY, et al. Plant mitogen-activated protein kinase cascades in environmental stresses[J]. Int J Mol Sci, 2021, 22(4): 1543.
doi: 10.3390/ijms22041543 URL |
[68] |
Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana[J]. New Phytol, 2019, 224(2): 585-604.
doi: 10.1111/nph.16088 pmid: 31369160 |
[69] | Cai HY, Cheng JB, Yan Y, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum[J]. Front Plant Sci, 2015, 6: 737. |
[70] | 胡炯. CaWRKY17与CaCDPK17/29互作及其在辣椒应答高温高湿和青枯菌侵染中的作用[D]. 福州: 福建农林大学, 2017. |
Hu J. The function of CaWRKY17 that interact with CaCDPK17/29 in response to high-temperature-high-humidity and Ralstonia solanacearum inoculation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. | |
[71] |
Xiao JJ, Zhang RX, Khan A, et al. CaFtsH06, a novel filamentous thermosensitive protease gene, is involved in heat, salt, and drought stress tolerance of pepper(Capsicum annuum L.)[J]. Int J Mol Sci, 2021, 22(13): 6953.
doi: 10.3390/ijms22136953 URL |
[72] |
Guan DY, Yang F, Xia XQ, et al. CaHSL1 acts as a positive regulator of pepper thermotolerance under high humidity and is transcriptionally modulated by CaWRKY40[J]. Front Plant Sci, 2018, 9: 1802.
doi: 10.3389/fpls.2018.01802 pmid: 30581449 |
[73] |
Wang H, Niu HH, Liang MM, et al. A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes[J]. Front Plant Sci, 2019, 10: 591.
doi: 10.3389/fpls.2019.00591 pmid: 31156664 |
[74] | Zhai YF, Guo M, Wang H, et al. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L[J]. Front Plant Sci, 2016, 7: 131. |
[75] | 高可, 杨巧敏, 陈涛, 等. 辣椒自噬相关基因CaATG16的表达特性及耐热功能分析[J]. 植物生理学报, 2022, 58(8): 1454-1464. |
Gao K, Yang QM, Chen T, et al. Characterization of expression patterns and functional analysis of autophagy-related gene CaATG16 under heat stress in pepper(Capsicum annuum)[J]. Plant Physiol J, 2022, 58(8): 1454-1464. | |
[76] |
Zhai YF, Wang H, Liang MM, et al. Both silencing- and over-expression of pepper CaATG8c gene compromise plant tolerance to heat and salt stress[J]. Environ Exp Bot, 2017, 141: 10-18.
doi: 10.1016/j.envexpbot.2017.06.009 URL |
[77] |
Ali M, Luo DX, Khan A, et al. Classification and genome-wide analysis of chitin-binding proteins gene family in pepper(Capsicum annuum L.) and transcriptional regulation to Phytophthora capsici, abiotic stresses and hormonal applications[J]. Int J Mol Sci, 2018, 19(8): 2216.
doi: 10.3390/ijms19082216 URL |
[78] |
Ali M, Muhammad I, Haq SU, et al. The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici[J]. Front Plant Sci, 2020, 11: 219.
doi: 10.3389/fpls.2020.00219 pmid: 32174952 |
[79] |
Yang S, Shi YY, Zou LY, et al. Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses[J]. Plant Cell Physiol, 2020, 61(7): 1223-1238.
doi: 10.1093/pcp/pcaa052 URL |
[80] | Cai WW, Yang S, Wu RJ, et al. CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper[J]. PLoS Genet, 2022, 18(2): e1010023. |
[81] | 王榕璋. CaSYT5在辣椒应答青枯病和高温高湿过程中的功能分析[D]. 福州: 福建农林大学, 2017. |
Wang RZ. The functional analysis of CaSYT5 in pepper's response to Ralstonia solanacearum or high-temperature-high-humidity challenge[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. | |
[82] | Ashraf MF. CaZhp2和CaHsfB2a在辣椒耐高温高湿或抗青枯病中作用分析[D]. 福州: 福建农林大学, 2018. |
Ashraf MF. Functional characterization of CaZhp2 and CaHsfB2a in pepper response to ralstionia solanacearum infection or high temperature and high humidity exposure[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. | |
[83] |
Groβkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants[J]. J Exp Bot, 2018, 69(4): 825-844.
doi: 10.1093/jxb/erx333 pmid: 29444308 |
[84] |
Li T, Xu XW, Li Y, et al. Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper(Capsicum annum L.) cultivars under heat stress[J]. J Plant Biol, 2015, 58(6): 411-424.
doi: 10.1007/s12374-015-0423-z URL |
[85] |
Tang BQ, Li XM, Zhang XH, et al. Transcriptome data reveal gene clusters and key genes in pepper response to heat shock[J]. Front Plant Sci, 2022, 13: 946475.
doi: 10.3389/fpls.2022.946475 URL |
[86] | 高崇伦. 中国辣椒和柔毛辣椒对温度胁迫响应的初步分析[D]. 海口: 海南大学, 2020. |
Gao CL. Preliminary analysis of the response to temperature stress in Capsicum chinense and Capsicum pubescens[D]. Haikou: Hainan University, 2020. | |
[87] | Wang J, Liang CL, Yang S, et al. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings[J]. PeerJ, 2021, 9: e11509. |
[88] |
Liu CC, Luo SD, Zhao Y, et al. Multiomics analyses reveal high temperature-induced molecular regulation of ascorbic acid and capsaicin biosynthesis in pepper fruits[J]. Environ Exp Bot, 2022, 201: 104941.
doi: 10.1016/j.envexpbot.2022.104941 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[3] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[4] | 李月, 余婉贤, 李宁, 姚明华, 李峰, 邓颖天. 辣椒苗期炭疽菌接种方法[J]. 生物技术通报, 2023, 39(4): 221-226. |
[5] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[6] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[7] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[8] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
[9] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[10] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
[11] | 李倩, 江文波, 王玉祥, 张博, 庞永珍. 苜蓿抗旱性分子研究进展[J]. 生物技术通报, 2021, 37(8): 243-252. |
[12] | 刘海光, 罗振, 董合忠. 植物硝态氮吸收和转运的调控研究进展[J]. 生物技术通报, 2021, 37(6): 192-201. |
[13] | 冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243. |
[14] | 武杞蔓, 张金梅, 李玥莹, 张颖. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230. |
[15] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||