生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 62-69.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0533
石佳鑫1,2(), 刘凯1,2, 朱金洁1, 祁显涛1, 谢传晓1, 刘昌林1()
收稿日期:
2023-06-07
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
刘昌林,男,博士,副研究员,研究方向:玉米基因编辑育种; E-mail: liuchanglin@caas.cn作者简介:
石佳鑫,男,硕士研究生,研究方向:玉米基因编辑育种;E-mail: sjx98108@163.com
基金资助:
SHI Jia-xin1,2(), LIU Kai1,2, ZHU Jin-jie1, QI Xian-tao1, XIE Chuan-xiao1, LIU Chang-lin1()
Received:
2023-06-07
Published:
2023-08-26
Online:
2023-09-05
摘要:
玉米紧凑株型能够通过密植栽培实现增产。改良玉米株型的关键性状叶夹角,创制紧凑株型的玉米杂交种,能够实现该增产过程。通过基因编辑技术和DTM(desire targeted mutation)策略,突变杂交种中单88的母本CX1的叶夹角形成关键基因ZmLG1,获得株型紧凑的改良母本自交系CX1-lg1。以此母本与中单88的父本CX2杂交,配制获得株型紧凑的ZmLG1Zmlg1改良杂交种中单88M。对改良母本CX1-lg1的制种效率及改良杂交种中单88M在增密栽培下的产量进行评估。结果显示:(1)通过母本株型改良能够实现对杂交种株型的改良;(2)株型紧凑的改良母本CX1-lg1在5 000株/667 m2 的条件下有更高的制种效率;(3)改良杂交种中单88M在不同环境和密度下均有更紧凑株型,且在较高栽培密度下实现增产。以上结果表明基因编辑技术能够通过靶向特定基因实现精确的表型调控,借助DTM策略改良亲本可以实现对杂交种特定表型的改良。
石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69.
SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield[J]. Biotechnology Bulletin, 2023, 39(8): 62-69.
图1 CX1 和 CX1-lg1基因型与株型 A:CX1和CX1-lg1株型比较;B:CX1和CX1-lg1基因型比较;C:穗上第3叶叶枕部分;D:穗下第三叶叶枕部分;E:穗上叶夹角统计;F:穗下叶夹角统计;误差线代表标准偏差,n=30;星号代表t检验差异显著(*P<0.05; **P<0.01)
Fig. 1 Plant and genotype of CX1 and CX1-lg1 A: Plant types between CX1 and CX1-lg1. B: Genotypes between CX1 and CX1-lg1. C: Pulvinus of 3rd upper leaf. D: Pulvinus of 3rd lower leaf. E: Statistics of upper leaf angle. F: Statistics of lower leaf angle. Error bar represents standard deviation, n=30; asterisks represent significant differences in t-test(*P<0.05; **P<0.01)
图2 改良母本的杂交制种产量 A:中单88制种试验;B:中单88M制种试验;C:小区收获穗数;D:小区折算产量;误差线代表标准偏差,n=2
Fig. 2 Seed production yield of improved maternal parent A: Zhongdan 88 seed production trial. B: Zhongdan 88M seed production trial. C: Number of harvested ears in plots. D: Converted yield of plots. Error bar represents standard deviation, n=2
图3 改良母本使改良杂交种中单88M株型紧凑 A:中单88和中单88M株型比较;B:中单88和中单88M在3个环境不同密度下的穗上叶夹角;C:中单88和中单88M在3个环境不同密度下的穗下叶夹角;误差线代表标准偏差,n=80;星号代表t检验差异显著(*P<0.05; **P<0.01)
Fig. 3 Improved maternal parent grants a compact plant type for hybrid Zhongdan88M A: Plant types between Zhongdan88 and Zhongdan88M. B: The upper leaf angle between Zhongdan88 and Zhongdan88M under different densities in 3 environments. C: The lower leaf angle between Zhongdan88 and Zhongdan88M under different densities in 3 environments. Error bar represents standard deviation; n=80; and asterisks represent significant differences in t-test(*P<0.05; **P<0.01)
图4 改良杂交种中单88M在增密栽培条件下产量增加 A:7 000株/667 m2中单88和中单88M产量比较;B:密度试验小区产量统计;误差线代表标准偏差,n=2
Fig. 4 Improved hybrid Zhongdan88M grants an increased yield in dense-planting cultivation A: Yield between Zhongdan88 and Zhongdan88M under 7 000 plants per 667 m2 dense. B: Statistic of yield in plots over density test. Error bar represents standard deviation, n=2
源Source | 自由度Df | 穗上叶夹角LLA | 穗下叶夹角ULA | 穗位叶夹角ELA | 穗位高EH | 株高PH |
---|---|---|---|---|---|---|
密度Density | 2 | 0.73 | 10.01** | 3.29* | 9.32** | 19.97** |
材料Material | 1 | 1581.94** | 1918.59** | 294.76** | 689.52** | 522.23** |
环境Environment | 2 | 736.70** | 1655.75** | 248.16** | 270.36** | 2909.15** |
密度×材料D×M | 2 | 2.81 | 4.93** | 2.96 | 2.68 | 1.17 |
环境×材料E×M | 2 | 30.45** | 20.42** | 4.35* | 12.06** | 3.06* |
表1 株型相关性状方差分析 F 统计量
Table 1 F statistic analysis of variance for plant type related traits
源Source | 自由度Df | 穗上叶夹角LLA | 穗下叶夹角ULA | 穗位叶夹角ELA | 穗位高EH | 株高PH |
---|---|---|---|---|---|---|
密度Density | 2 | 0.73 | 10.01** | 3.29* | 9.32** | 19.97** |
材料Material | 1 | 1581.94** | 1918.59** | 294.76** | 689.52** | 522.23** |
环境Environment | 2 | 736.70** | 1655.75** | 248.16** | 270.36** | 2909.15** |
密度×材料D×M | 2 | 2.81 | 4.93** | 2.96 | 2.68 | 1.17 |
环境×材料E×M | 2 | 30.45** | 20.42** | 4.35* | 12.06** | 3.06* |
源Source | 自由度Df | 秃尖长BTL | 收获量HM | 出籽率KY | 有效穗数PEC | 产量Y |
---|---|---|---|---|---|---|
密度Density | 2 | 35.89** | 4.65* | 0.05 | 34.46** | 2.87 |
材料Material | 1 | 68.46** | 3.43 | 20.55** | 2.14 | 0.71 |
环境Environment | 2 | 3726.46** | 65.84** | 148.25** | 157.18** | 25.65** |
密度×材料D×M | 2 | 3.39* | 2.09 | 0.21 | 0.04 | 1.71 |
环境×材料E×M | 2 | 25.75** | 1.68 | 0.11 | 7.06** | 0.35 |
表2 产量相关性状方差分析 F 统计量
Table 2 F statistic analysis of variance for yield related traits
源Source | 自由度Df | 秃尖长BTL | 收获量HM | 出籽率KY | 有效穗数PEC | 产量Y |
---|---|---|---|---|---|---|
密度Density | 2 | 35.89** | 4.65* | 0.05 | 34.46** | 2.87 |
材料Material | 1 | 68.46** | 3.43 | 20.55** | 2.14 | 0.71 |
环境Environment | 2 | 3726.46** | 65.84** | 148.25** | 157.18** | 25.65** |
密度×材料D×M | 2 | 3.39* | 2.09 | 0.21 | 0.04 | 1.71 |
环境×材料E×M | 2 | 25.75** | 1.68 | 0.11 | 7.06** | 0.35 |
[1] | 徐田军, 吕天放, 赵久然, 等. 除草剂对不同玉米品种生长发育和产量的影响[J]. 中国生态农业学报, 2018, 26(8): 1159-1169. |
Xu TJ, Lyu TF, Zhao JR, et al. Effects of herbicides on growth, development and yield of different maize varieties[J]. Chin J Eco Agric, 2018, 26(8): 1159-1169. | |
[2] |
Leegood RC. Strategies for engineering C4 photosynthesis[J]. J Plant Physiol, 2013, 170(4): 378-388.
doi: 10.1016/j.jplph.2012.10.011 URL |
[3] |
Jia QM, Sun LF, Mou HY, et al. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize(Zea mays L.) in semi-arid regions[J]. Agric Water Manag, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025 URL |
[4] | 王敬亚, 齐华, 梁熠, 等. 种植方式对春玉米光合特性、干物质积累及产量的影响[J]. 玉米科学, 2009, 17(5): 113-115, 120. |
Wang JY, Qi H, Liang Y, et al. Effects of different planting patterns on the photosynthesis capacity dry matter accumulation and yield of spring maize[J]. J Maize Sci, 2009, 17(5): 113-115, 120. | |
[5] |
朴琳, 李波, 陈喜昌, 等. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应[J]. 中国农业科学, 2020, 53(15): 3048-3058.
doi: 10.3864/j.issn.0578-1752.2020.15.006 |
Piao L, Li B, Chen XC, et al. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population[J]. Sci Agric Sin, 2020, 53(15): 3048-3058.
doi: 10.3864/j.issn.0578-1752.2020.15.006 |
|
[6] |
Li RF, Zhang GQ, Liu GZ, et al. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure[J]. Food Energy Secur, 2021, 10(4): e312.
doi: 10.1002/fes3.v10.4 URL |
[7] | 刘胜群, 宋凤斌, 朱先灿, 等. 玉米穗下节间与抗倒性相关的某些性状对增加密度的响应[J]. 土壤与作物, 2013, 2(4): 145-149. |
Liu SQ, Song FB, Zhu XC, et al. Responses of internodes below ear and lodging-related traits to increased planting density in maize[J]. Soil Crop, 2013, 2(4): 145-149. | |
[8] |
金容, 李钟, 杨云, 等. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
doi: 10.3724/SP.J.1006.2020.93034 |
Jin R, Li Z, Yang Y, et al. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan[J]. Acta Agron Sin, 2020, 46(4): 614-630.
doi: 10.3724/SP.J.1006.2020.93034 |
|
[9] |
Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiol, 2011, 155(1): 86-92.
doi: 10.1104/pp.110.168831 pmid: 21084435 |
[10] |
Stewart DW, Costa C, Dwyer LM, et al. Canopy structure, light interception, and photosynthesis in maize[J]. Agron J, 2003, 95(6): 1465-1474.
doi: 10.2134/agronj2003.1465 URL |
[11] |
Antonietta M, Fanello DD, Acciaresi HA, et al. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina[J]. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016 URL |
[12] |
卫晓轶, 杨海峰, 魏锋, 等. 不同基因型玉米株型性状的杂种优势分析[J]. 农学学报, 2022, 12(1): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0195 |
Wei XY, Yang HF, Wei F, et al. Plant type characters of maize with different genotypes: heterosis analysis[J]. J Agric, 2022, 12(1): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0195 |
|
[13] |
Li HT, Li JJ, Song JR, et al. An auxin signaling gene BnaA3. IAA 7 contributes to improved plant architecture and yield heterosis in rapeseed[J]. New Phytol, 2019, 222(2): 837-851.
doi: 10.1111/nph.2019.222.issue-2 URL |
[14] |
Warburton ML, Rauf S, Marek L, et al. The use of crop wild relatives in maize and sunflower breeding[J]. Crop Sci, 2017, 57(3): 1227-1240.
doi: 10.2135/cropsci2016.10.0855 URL |
[15] |
Li CX, Liu CL, Qi XT, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize[J]. Plant Biotechnol J, 2017, 15(12): 1566-1576.
doi: 10.1111/pbi.2017.15.issue-12 URL |
[16] |
Moreno MA, Harper LC, Krueger RW, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes Dev, 1997, 11(5): 616-628.
doi: 10.1101/gad.11.5.616 URL |
[17] |
Sylvester AW, Cande WZ, Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development[J]. Development, 1990, 110(3): 985-1000.
doi: 10.1242/dev.110.3.985 pmid: 2088734 |
[18] |
Lee J, Park JJ, Kim SL, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant Mol Biol, 2007, 65(4): 487-499.
doi: 10.1007/s11103-007-9196-1 pmid: 17594063 |
[19] |
Liu KY, Cao J, Yu KH, et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling[J]. Plant Physiol, 2019, 181(1): 179-194.
doi: 10.1104/pp.19.00248 URL |
[20] |
Yang SM, Overlander-Chen M, Carlson CH, et al. A SQUAMOSA promoter binding protein-like transcription factor controls crop ideotype for high productivity in barley[J]. Plant Direct, 2022, 6(9): e450.
doi: 10.1002/pld3.v6.9 URL |
[21] |
Filyushin MA, Khatefov EB, Kochieva EZ, et al. Comparative analysis of transcription factor genes liguleless1 and liguleless1-like in teosinte and modern maize accessions[J]. Russ J Genet, 2022, 58(3): 296-306.
doi: 10.1134/S102279542203005X |
[22] |
Bai F, Reinheimer R, Durantini D, et al. Tcp transcription factor, branch angle defective 1(bad1), is required for normal tassel branch angle formation in maize[J]. Proc Natl Acad Sci USA, 2012, 109(30): 12225-12230.
doi: 10.1073/pnas.1202439109 URL |
[23] | 郝晓敏. 利用两个高油主效QTL改良优良杂交种—郑单958的研究[D]. 北京: 中国农业大学, 2014. |
Hao XM. Studies of improving elite maize hybrid Zhengdan958 using two major QTL for oil content[D]. Beijing: China agricultural University, 2014. | |
[24] |
Mickelson SM, Stuber CS, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize[J]. Crop Sci, 2002, 42(6): 1902-1909.
doi: 10.2135/cropsci2002.1902 URL |
[1] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[2] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[3] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[4] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[5] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[6] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[7] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[8] | 赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12. |
[9] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
[10] | 陈映丹, 张扬, 夏嫱, 孙虹霞. CRISPR/Cas基因编辑技术及其在微藻研究中的应用[J]. 生物技术通报, 2022, 38(5): 257-268. |
[11] | 胡秀文, 刘华, 王宇, 唐雪明, 王金斌, 曾海娟, 蒋玮, 李红. CRISPR-Cas系统在核酸检测中的应用研究[J]. 生物技术通报, 2021, 37(9): 266-273. |
[12] | 黄耀辉, 焦悦, 付仲文. 日本转基因作物安全管理制度概况及进展[J]. 生物技术通报, 2021, 37(3): 99-106. |
[13] | 左玲莉, 周丽婷, 吴兴旗, 吴超逸, 吴淑燕. 鼠伤寒沙门菌spvBC基因编辑株的构建[J]. 生物技术通报, 2021, 37(2): 253-260. |
[14] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
[15] | 刘佳, 魏佳奇, 刘玉琴, 时歌歌, 郭静. 基于专利分析和社会网络分析的基因编辑技术演化研究[J]. 生物技术通报, 2021, 37(12): 274-284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||