生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0311
• 特约综述 • 下一篇
收稿日期:
2022-03-14
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
赖昕彤,女,硕士研究生,研究方向:碱基编辑;E-mail: 基金资助:
LAI Xin-tong(), WANG Ke-lan, YOU Yu-xin, TAN Jun-jie()
Received:
2022-03-14
Published:
2022-06-26
Online:
2022-07-11
摘要:
基于CRISPR/Cas的基因编辑是近年发展起来的一项变革性生物技术。其过程包括在目标DNA位点引入双链断裂(double strand break,DSB)以及其后续的细胞修复。细胞修复DSB主要有两种方式:非同源末端连接(non-homologous end joining,NHEJ)以及同源重组介导的修复(homology-directed repair,HDR)。前者是大多数细胞修复DSB的主要方式,其特点在于修复简单、效率高但极易出错,往往会引发难以预测的核苷酸插入或删除。点突变是自然界中最常见的遗传突变类型,引起了超过半数的人类遗传疾病以及许多重要农艺性状变异。碱基编辑能够实现单个碱基的替换,既不需要引入DSB,又无需修复模板参与,具有高效、编辑结果可控等优点,在基因治疗、作物育种及生物技术研究等方面具有重大的应用潜能。自首个碱基编辑工具开发以来,碱基编辑相关技术得到快速发展及广泛应用。本文综述了目前DNA碱基编辑研究进展,重点阐述了碱基编辑器及其在编辑效率、精度以及特异性提高和编辑范围扩展等方面的最新进展以及仍存在的瓶颈,并展望其研究和应用前景。
赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12.
LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing[J]. Biotechnology Bulletin, 2022, 38(6): 1-12.
碱基编辑器名称 Base editor | 结构组成 Architecture | 编辑窗口 Editing window | 序列偏好 Sequence preference | 参考文献 Reference |
---|---|---|---|---|
BE3 | rAPOBEC1-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
AID-BE3 | hAID-XTEN-nCas9-UGI | C3 - C8 | None | [ |
Target-AID | nCas9-linker-PmCDA1-UGI | C2 - C5 | None | [ |
CDA1-BE3 | PmCDA1-XTEN-nCas9-UGI | C1 - C7 | None | [ |
CDA1Δ-BE3 | PmCDA1Δ-nCas9-UGI | C3 - C4 | None | [ |
A3A-BE3 | hA3A-XTEN-nCas9-UGI | C4 - C8 | None | [ |
eA3A-BE3 | hA3A(N57G)-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
A3A∆-BE3 | hA3AΔ-nCas9-UGI | C5 - C6 | None | [ |
YE1-BE3 | rAPOBEC1(W90Y/R126E)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
YE2-BE3 | rAPOBEC1(W90Y/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
YEE-BE3 | rAPOBEC1(W90Y/R126E/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
SECURE-BE3 | rAPOBEC1(R33A or R33A/K34A)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
SaBE3 | rAPOBEC1-XTEN-Sa nCas9-UGI | C3 - C12 | TC | [ |
dCpf1-BE | rAPOBEC1-XTEN-dCpf1-UGI | C8 - C13 | TC | [ |
BE-PLUS | GCN4(10×)-nCas9 scFv-rAPOBEC1-UGI | C4 - C14 | TC | [ |
TAM | dCas9-linker-hAID(P182X) | C4 - C8 | None | [ |
CRISPR-X | dCas9/MS2-linker-hAIDΔ | C-50 - C50 | None | [ |
A3G-BE3 | hA3G-XTEN-nCas9-UGI | C4 - C8 | CC | [ |
eA3G-BE | hA3G-CTD-XTEN-nCas9-2*UGI | C4 - C8 | CC | [ |
ABE7.10 | TadA-linker-evoTadA-linker-nCas9 | A4 - A7 | None | [ |
ABE7.10F148A | TadA F148A-evoTadA F148A-linker-nCas9 | A5 | None | [ |
dCasMINI-ABE | TadA-linker-evoTadA-linker- dCasMINI | A3 - A4 | None | [ |
CP-ABEs | TadA -linker-evoTadA -linker-CP-nCas9s | A4 - A12 | None | [ |
表1 主要碱基编辑器及其特征
Table 1 Major base editors and their characteristics
碱基编辑器名称 Base editor | 结构组成 Architecture | 编辑窗口 Editing window | 序列偏好 Sequence preference | 参考文献 Reference |
---|---|---|---|---|
BE3 | rAPOBEC1-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
AID-BE3 | hAID-XTEN-nCas9-UGI | C3 - C8 | None | [ |
Target-AID | nCas9-linker-PmCDA1-UGI | C2 - C5 | None | [ |
CDA1-BE3 | PmCDA1-XTEN-nCas9-UGI | C1 - C7 | None | [ |
CDA1Δ-BE3 | PmCDA1Δ-nCas9-UGI | C3 - C4 | None | [ |
A3A-BE3 | hA3A-XTEN-nCas9-UGI | C4 - C8 | None | [ |
eA3A-BE3 | hA3A(N57G)-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
A3A∆-BE3 | hA3AΔ-nCas9-UGI | C5 - C6 | None | [ |
YE1-BE3 | rAPOBEC1(W90Y/R126E)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
YE2-BE3 | rAPOBEC1(W90Y/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
YEE-BE3 | rAPOBEC1(W90Y/R126E/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
SECURE-BE3 | rAPOBEC1(R33A or R33A/K34A)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
SaBE3 | rAPOBEC1-XTEN-Sa nCas9-UGI | C3 - C12 | TC | [ |
dCpf1-BE | rAPOBEC1-XTEN-dCpf1-UGI | C8 - C13 | TC | [ |
BE-PLUS | GCN4(10×)-nCas9 scFv-rAPOBEC1-UGI | C4 - C14 | TC | [ |
TAM | dCas9-linker-hAID(P182X) | C4 - C8 | None | [ |
CRISPR-X | dCas9/MS2-linker-hAIDΔ | C-50 - C50 | None | [ |
A3G-BE3 | hA3G-XTEN-nCas9-UGI | C4 - C8 | CC | [ |
eA3G-BE | hA3G-CTD-XTEN-nCas9-2*UGI | C4 - C8 | CC | [ |
ABE7.10 | TadA-linker-evoTadA-linker-nCas9 | A4 - A7 | None | [ |
ABE7.10F148A | TadA F148A-evoTadA F148A-linker-nCas9 | A5 | None | [ |
dCasMINI-ABE | TadA-linker-evoTadA-linker- dCasMINI | A3 - A4 | None | [ |
CP-ABEs | TadA -linker-evoTadA -linker-CP-nCas9s | A4 - A12 | None | [ |
[1] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
doi: 10.1126/science.1225829 URL |
[2] | Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases[J]. Nat Rev Genet, 2010, 11(9):636-646. |
[3] |
Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29(2):143-148.
doi: 10.1038/nbt.1755 URL |
[4] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39):E2579-E2586. |
[5] |
Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18(8):495-506.
doi: 10.1038/nrm.2017.48 URL |
[6] |
Sung P, Klein H. Mechanism of homologous recombination:mediators and helicases take on regulatory functions[J]. Nat Rev Mol Cell Biol, 2006, 7(10):739-750.
doi: 10.1038/nrm2008 URL |
[7] | Alanis-Lobato G, Zohren J, McCarthy A, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos[J]. Proc Natl Acad Sci USA, 2021, 118(22):e2004832117. |
[8] |
Höijer I, Emmanouilidou A, Östlund R, et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations[J]. Nat Commun, 2022, 13(1):627.
doi: 10.1038/s41467-022-28244-5 pmid: 35110541 |
[9] | Landrum MJ, Lee JM, Benson M, et al. ClinVar:public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Res, 2016, 44(D1):D862-D868. |
[10] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
doi: 10.1038/nature17946 URL |
[11] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.
doi: 10.1038/nature24644 URL |
[12] |
Zhao DD, Li J, Li SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40.
doi: 10.1038/s41587-020-0592-2 URL |
[13] |
Kurt IC, Zhou RH, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nat Biotechnol, 2021, 39(1):41-46.
doi: 10.1038/s41587-020-0609-x URL |
[14] |
Koblan LW, Arbab M, Shen MW, et al. Efficient C·G-to-G·C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nat Biotechnol, 2021, 39(11):1414-1425.
doi: 10.1038/s41587-021-00938-z pmid: 34183861 |
[15] |
Rees HA, Liu DR. Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12):770-788.
doi: 10.1038/s41576-018-0059-1 URL |
[16] |
Porto EM, Komor AC, Slaymaker IM, et al. Base editing:advances and therapeutic opportunities[J]. Nat Rev Drug Discov, 2020, 19(12):839-859.
doi: 10.1038/s41573-020-0084-6 URL |
[17] |
Molla KA, Yang YN. CRISPR/cas-mediated base editing:technical considerations and practical applications[J]. Trends Biotechnol, 2019, 37(10):1121-1142.
doi: 10.1016/j.tibtech.2019.03.008 URL |
[18] |
Yarra R, Sahoo L. Base editing in rice:current progress, advances, limitations, and future perspectives[J]. Plant Cell Rep, 2021, 40(4):595-604.
doi: 10.1007/s00299-020-02656-3 URL |
[19] |
Mishra R, Joshi RK, Zhao KJ. Base editing in crops:current advances, limitations and future implications[J]. Plant Biotechnol J, 2020, 18(1):20-31.
doi: 10.1111/pbi.13225 URL |
[20] | Azameti MK, Dauda WP. Base editing in plants:applications, challenges, and future prospects[J]. Front Plant Sci, 2021, 12:664997. |
[21] |
Wang Y, Liu Y, Zheng P, et al. Microbial base editing:a powerful emerging technology for microbial genome engineering[J]. Trends Biotechnol, 2021, 39(2):165-180.
doi: 10.1016/j.tibtech.2020.06.010 pmid: 32680590 |
[22] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7):824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269 |
[23] | Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8):eaao4774. |
[24] |
Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9):843-846.
doi: 10.1038/nbt.4172 pmid: 29813047 |
[25] |
Gaudelli NM, Lam DK, Rees HA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application[J]. Nat Biotechnol, 2020, 38(7):892-900.
doi: 10.1038/s41587-020-0491-6 pmid: 32284586 |
[26] |
Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nat Biotechnol, 2020, 38(7):883-891.
doi: 10.1038/s41587-020-0453-z URL |
[27] |
Lapinaite A, Knott GJ, Palumbo CM, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503):566-571.
doi: 10.1126/science.abb1390 pmid: 32732424 |
[28] |
Yan DQ, Ren B, Liu L, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants[J]. Mol Plant, 2021, 14(5):722-731.
doi: 10.1016/j.molp.2021.02.007 URL |
[29] |
Wei C, Wang C, Jia M, et al. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor[J]. J Integr Plant Biol, 2021, 63(9):1595-1599.
doi: 10.1111/jipb.13089 URL |
[30] |
Zhang XH, Chen L, Zhu BY, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain[J]. Nat Cell Biol, 2020, 22(6):740-750.
doi: 10.1038/s41556-020-0518-8 URL |
[31] | Jinek M, Jiang FG, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. |
[32] |
Jiang FG, Doudna JA. CRISPR-cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46:505-529.
doi: 10.1146/annurev-biophys-062215-010822 URL |
[33] | Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):aaf8729. |
[34] |
Tan JJ, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement[J]. Nat Commun, 2019, 10(1):439.
doi: 10.1038/s41467-018-08034-8 URL |
[35] |
Tan JJ, Zhang F, Karcher D, et al. Expanding the genome-targeting scope and the site selectivity of high-precision base editors[J]. Nat Commun, 2020, 11(1):629.
doi: 10.1038/s41467-020-14465-z URL |
[36] | Hess GT, Frésard L, Han K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods, 2016, 13(12):1036-1042. |
[37] |
Kuscu C, Adli M. CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool[J]. Nat Methods, 2016, 13(12):983-984.
doi: 10.1038/nmeth.4076 pmid: 27898061 |
[38] |
Gehrke JM, Cervantes O, Clement MK, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nat Biotechnol, 2018, 36(10):977-982.
doi: 10.1038/nbt.4199 pmid: 30059493 |
[39] |
Wang X, Li JN, Wang Y, et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J]. Nat Biotechnol, 2018, 36(10):946-949.
doi: 10.1038/nbt.4198 URL |
[40] |
Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat Biotechnol, 2018, 36(10):950-953.
doi: 10.1038/nbt.4261 URL |
[41] | Lee S, Ding N, Sun YD, et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects[J]. Sci Adv, 2020, 6(29):eaba1773. |
[42] |
Liu ZQ, Chen SY, Shan HH, et al. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions[J]. BMC Biol, 2020, 18(1):111.
doi: 10.1186/s12915-020-00849-6 URL |
[43] |
Banno S, Nishida K, Arazoe T, et al. Deaminase-mediated multiplex genome editing in Escherichia coli[J]. Nat Microbiol, 2018, 3(4):423-429.
doi: 10.1038/s41564-017-0102-6 URL |
[44] |
Cheng TL, Li S, Yuan B, et al. Expanding C-T base editing toolkit with diversified cytidine deaminases[J]. Nat Commun, 2019, 10(1):3612.
doi: 10.1038/s41467-019-11562-6 URL |
[45] |
Shimatani Z, Kashojiya S, Takayama M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):441-443.
doi: 10.1038/nbt.3833 pmid: 28346401 |
[46] |
Kim YB, Komor AC, Levy JM, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4):371-376.
doi: 10.1038/nbt.3803 URL |
[47] |
Zhou CY, Sun YD, Yan R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278.
doi: 10.1038/s41586-019-1314-0 URL |
[48] |
Jiang W, Feng SJ, Huang SS, et al. BE-PLUS:a new base editing tool with broadened editing window and enhanced fidelity[J]. Cell Res, 2018, 28(8):855-861.
doi: 10.1038/s41422-018-0052-4 pmid: 29875396 |
[49] |
Grünewald J, Zhou RH, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7):861-864.
doi: 10.1038/s41587-020-0535-y pmid: 32483364 |
[50] |
Li C, Zhang R, Meng XB, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.
doi: 10.1038/s41587-019-0393-7 URL |
[51] |
Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7):865-869.
doi: 10.1038/s41587-020-0509-0 pmid: 32483365 |
[52] |
Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860.
doi: 10.1038/s41587-020-0527-y URL |
[53] |
Ma YQ, Zhang JY, Yin WJ, et al. Targeted AID-mediated mutagenesis(TAM)enables efficient genomic diversification in mammalian cells[J]. Nat Methods, 2016, 13(12):1029-1035.
doi: 10.1126/science.13.339.1029.b URL |
[54] |
Li XS, Wang Y, Liu YJ, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36(4):324-327.
doi: 10.1038/nbt.4102 URL |
[55] |
Xu XS, Chemparathy A, Zeng LP, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing[J]. Mol Cell, 2021, 81(20):4333-4345.
doi: 10.1016/j.molcel.2021.08.008 URL |
[56] |
Oakes BL, Fellmann C, Rishi H, et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification[J]. Cell, 2019, 176(1/2):254-267.
doi: 10.1016/j.cell.2018.11.052 URL |
[57] |
Huang TP, Zhao KT, Miller SM, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nat Biotechnol, 2019, 37(6):626-631.
doi: 10.1038/s41587-019-0134-y pmid: 31110355 |
[58] |
Liu YJ, Zhou CY, Huang SS, et al. A Cas-embedding strategy for minimizing off-target effects of DNA base editors[J]. Nat Commun, 2020, 11(1):6073.
doi: 10.1038/s41467-020-19690-0 URL |
[59] |
Chu S, Packer M, Rees H, et al. Rationally designed base editors for precise editing of the sickle cell disease mutation[J]. CRISPR J, 2021, 4(2):169-177.
doi: 10.1089/crispr.2020.0144 URL |
[60] |
Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441 |
[61] |
Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488):290-296.
doi: 10.1126/science.aba8853 URL |
[62] |
Tan JT, Zeng DC, Zhao YC, et al. PhieABEs:a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants[J]. Plant Biotechnol J, 2022, 20(5):934-943.
doi: 10.1111/pbi.13774 URL |
[63] |
Zhang CW, Wang Y, Wang FP, et al. Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants[J]. Mol Plant, 2021, 14(2):191-194.
doi: 10.1016/j.molp.2020.12.016 URL |
[64] |
Qin RY, Li J, Liu XS, et al. SpCas9-NG self-targets the sgRNA sequence in plant genome editing[J]. Nat Plants, 2020, 6(3):197-201.
doi: 10.1038/s41477-020-0603-9 URL |
[65] |
Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826.
doi: 10.1038/nbt.2623 URL |
[66] |
Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9):839-843.
doi: 10.1038/nbt.2673 pmid: 23934178 |
[67] |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832.
doi: 10.1038/nbt.2647 URL |
[68] |
Liang PP, Sun HW, Sun Y, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J]. Protein Cell, 2017, 8(8):601-611.
doi: 10.1007/s13238-017-0418-2 URL |
[69] |
Lee JK, Jeong E, Lee J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nat Commun, 2018, 9(1):3048.
doi: 10.1038/s41467-018-05477-x URL |
[70] |
Xu W, Song W, Yang YX, et al. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice[J]. BMC Plant Biol, 2019, 19(1):511.
doi: 10.1186/s12870-019-2131-1 URL |
[71] |
Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4):430-435.
doi: 10.1038/s41587-019-0050-1 URL |
[72] |
Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284.
doi: 10.1038/nbt.2808 URL |
[73] |
Rose JC, Popp NA, Richardson CD, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs[J]. Nat Commun, 2020, 11(1):2697.
doi: 10.1038/s41467-020-16542-9 URL |
[74] | Jang HK, Jo DH, Lee SN, et al. High-purity production and precise editing of DNA base editing ribonucleoproteins[J]. Sci Adv, 2021, 7(35):eabg2661. |
[75] |
Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292.
doi: 10.1126/science.aav9973 URL |
[76] |
Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295.
doi: 10.1126/science.aaw7166 URL |
[77] |
Doman JL, Raguram A, Newby GA, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nat Biotechnol, 2020, 38(5):620-628.
doi: 10.1038/s41587-020-0414-6 URL |
[78] |
Zuo EW, Sun YD, Yuan TL, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J]. Nat Methods, 2020, 17(6):600-604.
doi: 10.1038/s41592-020-0832-x URL |
[79] |
Yu Y, Leete TC, Born DA, et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity[J]. Nat Commun, 2020, 11(1):2052.
doi: 10.1038/s41467-020-15887-5 URL |
[80] |
Grünewald J, Zhou RH, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756):433-437.
doi: 10.1038/s41586-019-1161-z URL |
[81] |
Grünewald J, Zhou RH, Iyer S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nat Biotechnol, 2019, 37(9):1041-1048.
doi: 10.1038/s41587-019-0236-6 pmid: 31477922 |
[82] | Rees HA, Wilson C, Doman JL, et al. Analysis and minimization of cellular RNA editing by DNA adenine base editors[J]. Sci Adv, 2019, 5(5):eaax5717. |
[83] |
Li JN, Yu WX, Huang SS, et al. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity[J]. Nat Commun, 2021, 12(1):2287.
doi: 10.1038/s41467-021-22519-z URL |
[84] |
Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice[J]. Nature, 2021, 595(7866):295-302.
doi: 10.1038/s41586-021-03609-w URL |
[85] |
Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature, 2021, 593(7859):429-434.
doi: 10.1038/s41586-021-03534-y URL |
[86] |
Kim K, Ryu SM, Kim ST, et al. Highly efficient RNA-guided base editing in mouse embryos[J]. Nat Biotechnol, 2017, 35(5):435-437.
doi: 10.1038/nbt.3816 URL |
[87] |
Koblan LW, Erdos MR, Wilson C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843):608-614.
doi: 10.1038/s41586-020-03086-7 URL |
[88] |
Villiger L, Grisch-Chan HM, Lindsay H, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J]. Nat Med, 2018, 24(10):1519-1525.
doi: 10.1038/s41591-018-0209-1 pmid: 30297904 |
[89] |
Bose SK, White BM, Kashyap MV, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J]. Nat Commun, 2021, 12(1):4291.
doi: 10.1038/s41467-021-24443-8 URL |
[90] |
Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):438-440.
doi: 10.1038/nbt.3811 URL |
[91] |
Hua K, Tao XP, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants[J]. Plant Biotechnol J, 2019, 17(2):499-504.
doi: 10.1111/pbi.12993 URL |
[92] |
Lu YM, Zhu JK. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(3):523-525.
doi: 10.1016/j.molp.2016.11.013 URL |
[93] |
Li JY, Sun YW, Du JL, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(3):526-529.
doi: 10.1016/j.molp.2016.12.001 URL |
[94] |
Kuang YJ, Li SF, Ren B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Mol Plant, 2020, 13(4):565-572.
doi: 10.1016/j.molp.2020.01.010 URL |
[95] |
Kuscu C, Parlak M, Tufan TR, et al. CRISPR-STOP:gene silencing through base-editing-induced nonsense mutations[J]. Nat Methods, 2017, 14(7):710-712.
doi: 10.1038/nmeth.4327 pmid: 28581493 |
[96] |
Billon P, Bryant EE, Joseph SA, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons[J]. Mol Cell, 2017, 67(6):1068-1079.
doi: 10.1016/j.molcel.2017.08.008 |
[97] | Dang L, Li GL, Wang XJ, et al. Comparison of gene disruption induced by cytosine base editing-mediated iSTOP with CRISPR/Cas9-mediated frameshift[J]. Cell Prolif, 2020, 53(5):e12820. |
[98] |
Ren QR, Sretenovic S, Liu GQ, et al. Improved plant cytosine base editors with high editing activity, purity, and specificity[J]. Plant Biotechnol J, 2021, 19(10):2052-2068.
doi: 10.1111/pbi.13635 URL |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[3] | 刘佳慧, 刘叶, 花尔并, 王猛. 谷氨酸棒杆菌中胞嘧啶碱基编辑工具的PAM拓展[J]. 生物技术通报, 2023, 39(9): 49-57. |
[4] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[5] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[6] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[7] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[8] | 张祖霖, 刘方芳, 周青鸟, 赵瑞强, 贺菽嘉, 林文珍. 基于CRISPR/Cas9技术构建与鉴定敲除ACE2基因的Huh7肝癌细胞株[J]. 生物技术通报, 2023, 39(6): 181-188. |
[9] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[10] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[11] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[12] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[13] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[14] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[15] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||