生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 155-169.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1075
杨伟成(), 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱(), 李润植()
收稿日期:
2023-11-17
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
薛金爱,女,博士,教授,研究方向:分子遗传与基因工程;E-mail: 306214803@qq.com;作者简介:
杨伟成,男,硕士研究生,研究方向:作物遗传育种;E-mail: yy15223068439@163.com
基金资助:
YANG Wei-cheng(), SUN Yan, YANG Qian, WANG Zhuang-lin, MA Ju-hua, XUE Jin-ai(), LI Run-zhi()
Received:
2023-11-17
Published:
2024-03-26
Online:
2024-04-08
摘要:
【目的】 脂肪酸转运蛋白(FAX)可介导植物细胞内脂肪酸从质体向外运输,在植物生长发育及响应非生物胁迫等方面发挥重要作用。研究陆地棉FAX家族基因及功能分析,为明确陆地棉油脂积累的分子机制和油脂代谢工程提供新思路。【方法】 从全基因组水平对GhFAX基因家族进行鉴定,并对GhFAX1蛋白进行亚细胞定位,通过酵母与烟草遗传转化对GhFAX1进行功能验证。【结果】 在陆地棉基因组中共鉴定到12个GhFAXs基因,家族各成员间具有相似的基因结构及蛋白理化性质。序列比对分析发现,GhFAX蛋白仅有少数氨基酸在进化中高度保守,暗示其对功能的重要性;进化树分析表明,GhFAXs基因与亚洲棉、雷蒙德氏棉的亲缘关系较近。转录组数据表明,GhFAXs可能参与陆地棉响应逆境胁迫的调控过程。通过实时荧光定量PCR发现,GhFAX4在花中表达较高,说明其参与花粉发育过程;GhFAX9在茎中表达较高,GhFAX1在陆地棉各个组织表达量均较高。选择GhFAX1进行亚细胞定位分析,证实GhFAX1定位在质体中。构建GhFAX1载体,使GhFAX1在酿酒酵母中过表达,结果显示,GhFAX1过表达酵母总脂提高了3.53%。底物偏好性试验显示,GhFAX1对C16:0具有选择性。通过烟草遗传转化,培育GhFAX1过表达烟草。结果显示,过表达烟草叶绿素提升了13.24%,荧光参数NPQ提高14.17%,Fm提高34.94%,F0降低35.28%;叶片总脂肪酸提高了5.2%,种子总脂肪酸提高了6.52%;种子的千粒重增加了近19.1%;同时蛋白含量显著下降。【结论】 GhFAXs提高了酵母与烟草的含油量,参与质体中棕榈酸的转出,使蛋白合成途径上的碳源流向油脂合成途径。
杨伟成, 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱, 李润植. 陆地棉FAX家族的全基因组鉴定及GhFAX1的功能分析[J]. 生物技术通报, 2024, 40(3): 155-169.
YANG Wei-cheng, SUN Yan, YANG Qian, WANG Zhuang-lin, MA Ju-hua, XUE Jin-ai, LI Run-zhi. Genome-wide Identification of the FAX family in Gossypium hirsutum and Functional Analysis of GhFAX1[J]. Biotechnology Bulletin, 2024, 40(3): 155-169.
基因名称 Gene name | 基因ID Gene ID | 氨基酸数Number of amino acids | 分子量Molecular weight/kD | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 亲水性 GRAVY | 亚细胞定位 Subcellular location | 信号肽Signal peptide |
---|---|---|---|---|---|---|---|---|
GhFAX1 | Gohir.1Z091100 | 226 | 24.766 | 9.945 | 43.96 | 0.037 | 叶绿体Chloroplast | 无None |
GhFAX2 | Gohir.A01G079000 | 92 | 9.800 | 10.205 | 26.53 | 0.608 | 叶绿体Chloroplast | 无None |
GhFAX3 | Gohir.A02G003100 | 325 | 35.350 | 7.082 | 48.29 | -0.086 | 叶绿体Chloroplast | 无None |
GhFAX4 | Gohir.A03G078700 | 167 | 17.689 | 10.572 | 31.56 | 0.475 | 叶绿体Chloroplast | 无None |
GhFAX5 | Gohir.A04G018500 | 119 | 12.694 | 9.914 | 19.20 | 0.497 | 叶绿体Chloroplast | 无None |
GhFAX6 | Gohir.A10G151100 | 203 | 21.714 | 8.691 | 26.02 | 0.246 | 叶绿体Chloroplast | 无None |
GhFAX7 | Gohir.D01G066100 | 119 | 12.652 | 9.979 | 24.77 | 0.640 | 叶绿体Chloroplast | 无None |
GhFAX8 | Gohir.D02G003500 | 323 | 35.316 | 7.368 | 51.03 | -0.124 | 叶绿体Chloroplast | 无None |
GhFAX9 | Gohir.D03G089300 | 174 | 18.350 | 10.151 | 29.59 | 0.571 | 叶绿体Chloroplast | 无None |
GhFAX10 | Gohir.D03G073000 | 228 | 25.046 | 6.885 | 46.30 | -0.113 | 叶绿体Chloroplast | 无None |
GhFAX11 | Gohir.D05G367500 | 119 | 12.846 | 9.914 | 20.92 | 0.541 | 叶绿体Chloroplast | 无None |
GhFAX12 | Gohir.D10G115200 | 316 | 34.020 | 8.984 | 38.16 | 0.005 | 叶绿体Chloroplast | 无None |
表1 棉花FAX家族蛋白性质分析
Table 1 Analysis of the properties of the FAX family proteins in G. hirsutum
基因名称 Gene name | 基因ID Gene ID | 氨基酸数Number of amino acids | 分子量Molecular weight/kD | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 亲水性 GRAVY | 亚细胞定位 Subcellular location | 信号肽Signal peptide |
---|---|---|---|---|---|---|---|---|
GhFAX1 | Gohir.1Z091100 | 226 | 24.766 | 9.945 | 43.96 | 0.037 | 叶绿体Chloroplast | 无None |
GhFAX2 | Gohir.A01G079000 | 92 | 9.800 | 10.205 | 26.53 | 0.608 | 叶绿体Chloroplast | 无None |
GhFAX3 | Gohir.A02G003100 | 325 | 35.350 | 7.082 | 48.29 | -0.086 | 叶绿体Chloroplast | 无None |
GhFAX4 | Gohir.A03G078700 | 167 | 17.689 | 10.572 | 31.56 | 0.475 | 叶绿体Chloroplast | 无None |
GhFAX5 | Gohir.A04G018500 | 119 | 12.694 | 9.914 | 19.20 | 0.497 | 叶绿体Chloroplast | 无None |
GhFAX6 | Gohir.A10G151100 | 203 | 21.714 | 8.691 | 26.02 | 0.246 | 叶绿体Chloroplast | 无None |
GhFAX7 | Gohir.D01G066100 | 119 | 12.652 | 9.979 | 24.77 | 0.640 | 叶绿体Chloroplast | 无None |
GhFAX8 | Gohir.D02G003500 | 323 | 35.316 | 7.368 | 51.03 | -0.124 | 叶绿体Chloroplast | 无None |
GhFAX9 | Gohir.D03G089300 | 174 | 18.350 | 10.151 | 29.59 | 0.571 | 叶绿体Chloroplast | 无None |
GhFAX10 | Gohir.D03G073000 | 228 | 25.046 | 6.885 | 46.30 | -0.113 | 叶绿体Chloroplast | 无None |
GhFAX11 | Gohir.D05G367500 | 119 | 12.846 | 9.914 | 20.92 | 0.541 | 叶绿体Chloroplast | 无None |
GhFAX12 | Gohir.D10G115200 | 316 | 34.020 | 8.984 | 38.16 | 0.005 | 叶绿体Chloroplast | 无None |
图1 陆地棉FAX家族蛋白氨基酸序列比对 红色特征框代表FAX家族蛋白具有较强保守性的氨基酸
Fig. 1 Multiple sequence alignment of FAX family protein in G. hirsutum The red box indicates the highly conserved amino acids of the FAX family proteins
图2 棉花FAX家族蛋白进化树分析 GhFAX:陆地棉;GbFAX:海岛棉;GaFAX:亚洲棉;GrFAX:雷蒙德氏棉
Fig. 2 Evolutionary tree analysis of FAX family proteins in cotton GhFAX: Gossypium hirsutum; GbFAX: G. barbadense; GaFAX:G. arboreum; GrFAX: G. raimondi
图8 陆地棉FAX家族基因表达模式分析 不同小写字母表示在P<0.05水平差异显著
Fig. 8 Analysis of gene expression patterns of FAX family Different lower letters indicate significant differences at P<0.05 level
图12 转基因烟草叶片叶绿素含量(A)、相关荧光参数(B)和转基因烟草蛋白含量(C)、淀粉(D)、叶片总脂肪酸(E)、可溶性糖(F)及转基因烟草种子千粒重(G)与总脂肪酸含量(H)
Fig. 12 Chlorophyll content(A), relevant fluorescence parameters(B), total fatty acid(C), soluble sugar(D), starch(E), protein content(F), 1 000-grain weight(G)and total fatty acid content(H)in transgenic tobacco leaves
[1] |
王美霞, 周大云, 马磊, 等. 棉籽油脂肪酸组成分析与评价[J]. 食品科学, 2016, 37(22): 136-141.
doi: 10.7506/spkx1002-6630-201622020 |
Wang MX, Zhou DY, Ma L, et al. Analysis and evaluation of fatty acid composition in cottonseed oil[J]. Food Sci, 2016, 37(22): 136-141.
doi: 10.1111/jfds.1972.37.issue-1 URL |
|
[2] | 刘大川. 棉籽油加工及其营养[J]. 中国油脂, 2012, 37(11): 8-10. |
Liu DC. Processing and nutrition of cottonseed oil[J]. China Oils Fats, 2012, 37(11): 8-10. | |
[3] |
Walther TC, Farese RV. Lipid droplets and cellular lipid metabolism[J]. Annu Rev Biochem, 2012, 81: 687-714.
doi: 10.1146/annurev-biochem-061009-102430 pmid: 22524315 |
[4] |
Li-Beisson Y, Neunzig J, Lee Y, et al. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids[J]. Curr Opin Plant Biol, 2017, 40: 138-146.
doi: S1369-5266(17)30136-X pmid: 28985576 |
[5] |
Li N, Gügel IL, Giavalisco P, et al. FAX1, a novel membrane protein mediating plastid fatty acid export[J]. PLoS Biol, 2015, 13(2): e1002053.
doi: 10.1371/journal.pbio.1002053 URL |
[6] |
金龙飞, 李睿, 曹红星. 油棕脂肪酸外运蛋白基因FAX1的克隆及表达分析[J]. 热带作物学报, 2022, 43(1):27-33.
doi: 10.3969/j.issn.1000-2561.2022.01.004 |
Jin LF, Li R, Cao HX, et al. Cloning and expression analysis of oil palm fatty acid transport protein gene FAX1[J]. Journal of Tropical Crops, 2022, 43(1):27-33. | |
[7] |
Li N, Zhang Y, Meng H, et al. Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii[J]. Biotechnol Biofuels, 2019, 12: 14.
doi: 10.1186/s13068-018-1332-4 |
[8] | Takemura T, Imamura S, Tanaka K. Identification of a chloroplast fatty acid exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae[J]. Algai Res, 2019, 38: 101396. |
[9] | 高岩, 郭东林, 郭长虹. 三烯脂肪酸在高等植物逆境胁迫应答中的作用[J]. 分子植物育种, 2010, 8(2): 365-369. |
Gao Y, Guo DL, Guo CH. Role of trienoic fatty acids in higher plants stress responses[J]. Mol Plant Breed, 2010, 8(2): 365-369. | |
[10] |
Routaboul JM, Fischer SF, Browse J. Trienoic fatty acids are required to maintain chloroplast function at low temperatures[J]. Plant Physiol, 2000, 124(4): 1697-1705.
doi: 10.1104/pp.124.4.1697 pmid: 11115886 |
[11] |
Iba K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance[J]. Annu Rev Plant Biol, 2002, 53: 225-245.
pmid: 12221974 |
[12] |
Shi JL, Cao YP, Fan XR, et al. A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa[J]. Mol Breeding, 2012, 29(3): 743-757.
doi: 10.1007/s11032-011-9587-5 URL |
[13] |
Yamauchi Y, Furutera A, Seki K, et al. Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants[J]. Plant Physiol Biochem, 2008, 46(8/9): 786-793.
doi: 10.1016/j.plaphy.2008.04.018 URL |
[14] |
韩二琴, 李健春, 李英双, 等. 转运蛋白调控植物脂质运输研究进展[J]. 中国油料作物学报, 2017, 39(2): 260-268.
doi: 10.7505/j.issn.1007-9084.2017.02.018 |
Han EQ, Li JC, Li YS, et al. Research advance in the regulation of plant lipid trafficking by transporters[J]. Chin J Oil Crop Sci, 2017, 39(2): 260-268. | |
[15] |
Wang X, Ma Q, Dou L, et al. Genome-wide characterization and comparative analysis of the MLO gene family in cotton[J]. Plant Physiol Biochem, 2016, 103: 106-119.
doi: 10.1016/j.plaphy.2016.02.031 URL |
[16] |
Niu EL, Cai CP, Zheng YJ, et al. Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development[J]. Mol Genet Genomics, 2016, 291(3): 1137-1154.
doi: 10.1007/s00438-016-1169-0 URL |
[17] |
Li FG, Fan GY, Lu CR, et al. Genome sequence of cultivated Upland cotton(Gossypium hirsutum TM-1)provides insights into genome evolution[J]. Nat Biotechnol, 2015, 33(5): 524-530.
doi: 10.1038/nbt.3208 |
[18] | Liu X, Zhao B, Zheng HJ, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J]. Sci Rep, 2015, 5(1): 1-14. |
[19] |
Zhao LF, Katavic V, Li FL, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1(LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis[J]. Plant J, 2010, 64(6): 1048-1058.
doi: 10.1111/tpj.2010.64.issue-6 URL |
[20] |
Nilsson R, Schultz IJ, Pierce EL, et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis[J]. Cell Metab, 2009, 10(2): 119-130.
doi: 10.1016/j.cmet.2009.06.012 pmid: 19656490 |
[21] | 陈雨沁, 王道阳, 刘艳艳, 等. 水稻与拟南芥跨膜蛋白14家族的分子进化特征与功能分析[J]. 基因组学与应用生物学, 2020, 39(3): 1229-1238. |
Chen YQ, Wang DY, Liu YY, et al. Bioinformatics analysis on evolutionary properties and functions of transmembrane 14 family in Arabidopsis and rice[J]. Genom Appl Biol, 2020, 39(3): 1229-1238. | |
[22] |
李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10): 8-15.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006 |
Li ZX, Chen XB. Research progress of plant inducible promoters and related cis-acting elements[J]. Biotechnology Bulletin, 2015, 31(10): 8-15. | |
[23] |
Morsomme P, Chami M, Marco S, et al. Characterization of a hyperthermophilic P-type ATPase from Methanococcus jannaschii expressed in yeast[J]. J Biol Chem, 2002, 277(33): 29608-29616.
doi: 10.1074/jbc.M203871200 pmid: 12048206 |
[24] |
Zwiers LH, Stergiopoulos I, Gielkens MMC, et al. ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds[J]. Mol Genet Genomics, 2003, 269(4): 499-507.
pmid: 12768412 |
[25] |
Ton VK, Mandal D, Vahadji C, et al. Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease[J]. J Biol Chem, 2002, 277(8): 6422-6427.
doi: 10.1074/jbc.M110612200 URL |
[26] |
Liang F, Cunningham KW, Harper JF, et al. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1997, 94(16): 8579-8584.
doi: 10.1073/pnas.94.16.8579 pmid: 9238019 |
[27] | 王丽艳. 油莎豆油脂合成相关基因的挖掘、表达分析及功能鉴定[D]. 长春: 吉林农业大学, 2022. |
Wang LY. Extraction, expression analysis and functional identification of genes related to oil synthesis in Yousha bean[D]. Changchun: Jilin Agricultural University, 2022. | |
[28] | 王昌陵, 王文斌, 曹永强, 等. 农杆菌介导的植物遗传转化机制研究进展[J]. 辽宁农业科学, 2013, 53(6): 56-61. |
Wang CL, Wang WB, Cao YQ, et al. Research of transformation mechanism mediated by Agrobacterium in plant[J]. Liaoning Agric Sci, 2013(4): 56-61. | |
[29] |
Siloto RMP, Kim F, Arturo LV, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis[J]. Plant Cell, 2006, 18(8): 1961-1974.
doi: 10.1105/tpc.106.041269 URL |
[30] |
Andre C, Froehlich JE, Moll MR, et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis[J]. Plant Cell, 2007, 19(6): 2006-2022.
doi: 10.1105/tpc.106.048629 pmid: 17557808 |
[31] |
Sébastien B, Sylvie W, Bertrand D, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana[J]. Plant J, 2007, 52(3): 405-419.
doi: 10.1111/j.1365-313X.2007.03232.x pmid: 17892448 |
[1] | 王娟, 王新, 田琴, 马晓梅, 周小凤, 李保成, 董承光. 陆地棉主要株型性状关联分析及优异等位基因挖掘[J]. 生物技术通报, 2024, 40(3): 146-154. |
[2] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[3] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[4] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[5] | 路喻丹, 刘晓驰, 冯新, 陈桂信, 陈义挺. 猕猴桃BBX基因家族成员鉴定与转录特征分析[J]. 生物技术通报, 2024, 40(2): 172-182. |
[6] | 任延靖, 张鲁刚, 赵孟良, 李江, 邵登魁. 白菜种子cDNA酵母文库的构建及BrTTG1互作蛋白的筛选及分析[J]. 生物技术通报, 2024, 40(2): 223-232. |
[7] | 谢宏, 周丽莹, 李舒文, 王梦迪, 艾晔, 晁跃辉. 蒺藜苜蓿MtCIM基因结构和功能分析[J]. 生物技术通报, 2024, 40(1): 262-269. |
[8] | 唐伟林, 康琴, 汪霞, 谌明洋, 孙欣江, 王棵, 侯凯, 吴卫, 徐东北. 薄荷茉莉酸受体McCOI1a基因的克隆与表达模式分析[J]. 生物技术通报, 2024, 40(1): 270-280. |
[9] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[10] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[11] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[12] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[13] | 王一帆, 候林慧, 常永春, 杨亚杰, 陈天, 赵祝跃, 荣二花, 吴玉香. 陆地棉与拟似棉异源六倍体的合成与性状鉴定[J]. 生物技术通报, 2023, 39(5): 168-176. |
[14] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[15] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||