生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 238-250.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0044
收稿日期:
2024-01-12
出版日期:
2024-06-26
发布日期:
2024-05-23
通讯作者:
王静,女,博士,讲师,研究方向:辣椒功能基因挖掘与种质创新;E-mail: wangjing315@sxau.edu.cn作者简介:
常雪瑞,女,硕士,研究方向:园艺植物生物技术与遗传改良;E-mail: C15835567493@163.com
基金资助:
CHANG Xue-rui(), WANG Tian-tian, WANG Jing()
Received:
2024-01-12
Published:
2024-06-26
Online:
2024-05-23
摘要:
【目的】 泛素结合酶E2(UBC)作为泛素蛋白酶体途径中将泛素转移至靶蛋白的重要中转酶,与植物的生长发育和许多胁迫有关。从辣椒全基因组中鉴定E2基因家族成员,分析相关基因表达模式,为后续研究提供理论基础。【方法】 基于辣椒全基因组信息,利用生物信息学方法对E2基因家族进行鉴定,系统分析该家族成员的基本理化性质、亚细胞定位、染色体定位、基因结构、系统进化关系、顺式作用元件、蛋白质互作网络、非生物胁迫响应与组织器官表达模式。【结果】 辣椒E2家族有48个成员,在11条染色体上呈不均匀地分布,其编码蛋白主要定位于细胞外和细胞核中;通过对辣椒、番茄和拟南芥的比较进化分析将其分为Group I-Group XIII亚族,同一亚族具有相似的蛋白保守基序和基因结构;发现共有26个蛋白之间存在互作;顺式作用元件分析表明,CaUBC基因启动子区含有大量光响应、激素响应元件,上游2 000 bp区域中存在多种与生长发育和抗逆性相关的顺式作用元件;CaUBC参与胁迫响应,在不同非生物胁迫和激素处理下,将其分为3类,其中高温环境下第3类基因为高表达;在组织器官中表现出不同的表达,其中CaUBC38在果实中的表达量变化较为明显,进行RT-qPCR分析发现,50 d相对表达量最高,10 d表达量最低。【结论】 获得48个辣椒E2(CaUBC)基因,揭示了E2家族不同成员在辣椒生长发育和非生物胁迫过程中的表达特征。
常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250.
CHANG Xue-rui, WANG Tian-tian, WANG Jing. Identification and Analysis of E2 Gene Family in Pepper(Capsicum annuum L.)[J]. Biotechnology Bulletin, 2024, 40(6): 238-250.
基因名称 Gene name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
CaUBC3 | AGCGGAGGTAGAGGAAGAGG | GCCACCCTCATAAGGTGTTC |
CaUBC8 | GCTGGTGGTGTTTTCCAAGT | GCTTCGAGCCATTGATTCAT |
CaUBC18 | TGCAGGTGGTGTTTTTCAAG | CGAGCCACCGATTCATATTT |
CaUBC21 | ATAGCCCCTATGCAGGAGGT | CAAGTGGATCGTCTGGGTTT |
CaUBC23 | CCCAATAAGCCACCAACAGT | ACTGAACATCCGAGCTGCTT |
CaUBC38 | GCGGAAAGTCCTTATCATGG | GATCAACAGGACCTGCCATT |
β-Actin | CCACCTCTTCACTCTCTGCTCT | ACTAGGAAAAACAGCCCTTGGT |
表1 E2家族基因表达分析的RT-qPCR所需引物
Table 1 Primers required for RT-qPCR for E2 family gene expression analysis
基因名称 Gene name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
CaUBC3 | AGCGGAGGTAGAGGAAGAGG | GCCACCCTCATAAGGTGTTC |
CaUBC8 | GCTGGTGGTGTTTTCCAAGT | GCTTCGAGCCATTGATTCAT |
CaUBC18 | TGCAGGTGGTGTTTTTCAAG | CGAGCCACCGATTCATATTT |
CaUBC21 | ATAGCCCCTATGCAGGAGGT | CAAGTGGATCGTCTGGGTTT |
CaUBC23 | CCCAATAAGCCACCAACAGT | ACTGAACATCCGAGCTGCTT |
CaUBC38 | GCGGAAAGTCCTTATCATGG | GATCAACAGGACCTGCCATT |
β-Actin | CCACCTCTTCACTCTCTGCTCT | ACTAGGAAAAACAGCCCTTGGT |
图2 辣椒(48个)、拟南芥(36个)和番茄(52个)UBC蛋白的系统发育进化树 At:拟南芥;Sl:番茄;Ca:辣椒
Fig. 2 Phylogenetic tree of UBC protein in C. annuum L.(48),A. thaliana L.(36)and S. lycopersicum L.(52) At: Arabidopsis thaliana L.; Sl: Solanum lycopersicum L.; Ca: Capsicum annuum L.
图5 E2家族的蛋白质互作网络分析 蛋白互作网络中的节点代表由一个蛋白质编码基因座产生的所有蛋白质,不同颜色的节点代表互作关系的不同程度,且随着节点间线条颜色的加深,互作强度也随之增强,较细的线条表明蛋白质间的互作较弱
Fig. 5 Analysis of the protein interaction network of the E2 family The nodes in the protein interaction network indicate all proteins produced by a protein-coding locus, and the nodes of different colors indicate different degrees of interaction, and the intensity of interaction increases with the deepening of the color of the lines between nodes, and the thinner lines indicate that the interaction between proteins is weaker
图7 CaUBC基因在不同器官中的表达谱 F1-F9:出现花蕾后;G1-G11:授粉后10、15、20、25、30、35、40、45、50、55、60 d的果实;ST1、ST2:授粉后10 d、15 d的果实;S3-S11:授粉后20、25、30、35、40、45、50、55、60 d的果实;T3-T11:授粉后20、25、30、35、40、45、50、55、60 d的果实;L1-L9:新叶刚现后2、5、10、15、20、25、30、40、50、60 d。下同
Fig. 7 Expression profiles of CaUBC genes in different organs F1-F9: After the appearance of flower buds. G1-G11: Fruits at 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 d after pollination. ST1 and ST2: Fruits at 10 and 15 d after pollination. S3-S11: Fruits at 20, 25, 30, 35, 40, 45, 50, 55, and 60 d after pollination. T3-T11: Fruits at 20, 25, 30, 35, 40, 45, 50, 55 and 60 d after pollination. L1-L9: 2, 5, 10, 15, 20, 25, 30, 40, 50 and 60 d after the emergence of new leaves. The same below
图8 辣椒E2基因家族8个代表基因的相对表达量 A:CaUBC38在果实发育过程中的相对表达量,CaUBC8在花发育过程中的相对表达量,CaUBC3/18在热胁迫下的相对表达量;B:CaUBC8/21/23/38在热胁迫下的相对表达量
Fig. 8 Relative expressions of eight representative genes of E2 gene family in pepper A: Relative expression of CaUBC38 during fruit development; relative expression of CaUBC8 during flower development; relative expression of CaUBC3/18 under heat stress.B: CaUBC8/21/23/38 under heat stress
[1] | Parisi M, Alioto D, Tripodi P. Overview of biotic stresses in pepper(Capsicum spp.): sources of genetic resistance, molecular breeding and genomics[J]. Int J Mol Sci, 2020, 21(7): 2587. |
[2] | Gao CL, Mumtaz MA, Zhou Y, et al. Integrated transcriptomic and metabolomic analyses of cold-tolerant and cold-sensitive pepper species reveal key genes and essential metabolic pathways involved in response to cold stress[J]. Int J Mol Sci, 2022, 23(12): 6683. |
[3] |
宁约瑟, 王国梁, 谢旗. 泛素连接酶E3介导的植物干旱胁迫反应[J]. 植物学报, 2011, 46(6): 606-616.
doi: 10.3724/SP.J.1259.2011.00606 |
Ning YS, Wang GL, Xie Q. E3 ubiquitin ligase-mediated drought responses in plants[J]. Chin Bull Bot, 2011, 46(6): 606-616. | |
[4] |
张蓓, 任福森, 赵洋, 等. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0132 |
Zhang B, Ren FS, Zhao Y, et al. Advances in the mechanism of pepper in the response to heat stress[J]. Biotechnol Bull, 2023, 39(7): 37-47.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0132 |
|
[5] |
Guo M, Yin YX, Ji JJ, et al. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper(Capsicum annuum L.)[J]. Genet Mol Res, 2014, 13(1): 1865-1875.
doi: 10.4238/2014.March.17.14 pmid: 24668674 |
[6] |
Ernst A, Avvakumov G, Tong JF, et al. A strategy for modulation of enzymes in the ubiquitin system[J]. Science, 2013, 339(6119): 590-595.
doi: 10.1126/science.1230161 pmid: 23287719 |
[7] |
Sadanandom A, Bailey M, Ewan R, et al. The ubiquitin-proteasome system: central modifier of plant signalling[J]. New Phytol, 2012, 196(1): 13-28.
doi: 10.1111/j.1469-8137.2012.04266.x pmid: 22897362 |
[8] |
Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling[J]. Science, 2007, 315(5809): 201-205.
doi: 10.1126/science.1127085 pmid: 17218518 |
[9] | Kraft E, Stone SL, Ma LG, et al. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis[J]. Plant Physiol, 2005, 139(4): 1597-1611. |
[10] | Stone SL, Hauksdóttir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1): 13-30. |
[11] |
俞沁含, 焦淑珍, 吴楠, 等. 葡萄E3泛素酶HOS1基因克隆、表达及抗血清制备[J]. 园艺学报, 2021, 48(6): 1173-1182.
doi: 10.16420/j.issn.0513-353x.2020-0557 |
Yu QH, Jiao SZ, Wu N, et al. Molecular cloning, expression and polyclonal antibody preparation of E3 ubiquitin ligase gene HOS1 from Vitis vinifera[J]. Acta Hortic Sin, 2021, 48(6): 1173-1182. | |
[12] | Liu WG, Tang X, Qi XH, et al. The ubiquitin conjugating enzyme: an important ubiquitin transfer platform in ubiquitin-proteasome system[J]. Int J Mol Sci, 2020, 21(8): 2894. |
[13] | Bae H, Kim WT. The N-terminal tetra-peptide(IPDE)short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity[J]. Biochem Biophys Res Commun, 2013, 433(2): 266-271. |
[14] | Bae H, Kim WT. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases[J]. Biochem Biophys Res Commun, 2014, 444(4): 575-580. |
[15] | Ye YH, Rape M. Building ubiquitin chains: E2 enzymes at work[J]. Nat Rev Mol Cell Biol, 2009, 10(11): 755-764. |
[16] |
王春萍, 张世才, 李怡斐, 等. 辣椒泛素结合酶变体类似蛋白基因克隆及其与氮吸收利用的相关性分析[J]. 核农学报, 2023, 37(3): 442-448.
doi: 10.11869/j.issn.1000-8551.2023.03.0442 |
Wang CP, Zhang SC, Li YF, et al. Cloning of E2 variant like protein gene in pepper and its correlation with nitrogen absorption and utilization[J]. J Nucl Agric Sci, 2023, 37(3): 442-448.
doi: 10.11869/j.issn.1000-8551.2023.03.0442 |
|
[17] | 顾星. 人类泛素结合酶UBE2T、UBE2W和UBE2Z的功能研究[D]. 上海: 复旦大学, 2008. |
Gu X. Functional studies of human ubiquitin-conjugating enzymes UBE2T, UBE2W, and UBE2Z[D]. Shanghai: Fudan University, 2008. | |
[18] |
Jentsch S. The ubiquitin-conjugation system[J]. Annu Rev Genet, 1992, 26: 179-207.
pmid: 1336336 |
[19] | Ahn MY, Oh TR, Seo DH, et al. Arabidopsis group XIV ubiquitin-conjugating enzymes AtUBC32, AtUBC33, and AtUBC34 play negative roles in drought stress response[J]. J Plant Physiol, 2018, 230: 73-79. |
[20] | Jue DW, Sang XL, Liu LQ, et al. The ubiquitin-conjugating enzyme gene family in longan(Dimocarpus longan Lour.): genome-wide identification and gene expression during flower induction and abiotic stress responses[J]. Molecules, 2018, 23(3): 662. |
[21] | Cui F, Liu LJ, Zhao QZ, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. Plant Cell, 2012, 24(1): 233-244. |
[22] | Wijk SJL, Marc Timmers HT. The family of ubiquitin-conjugating enzymes(E2s): deciding between life and death of proteins[J]. FASEB J, 2010, 24(4): 981-993. |
[23] | 刘维刚. 马铃薯泛素结合酶E2基因家族鉴定和StUBC9基因克隆及功能研究[D]. 兰州: 甘肃农业大学, 2019. |
Liu WG. Genome-wide identification of ubiquitin conjugating enzymes E2 gene family and cloning and functional aanlysis of StUBC9 in potato[D]. Lanzhou: Gansu Agricultural University, 2019. | |
[24] | Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815. |
[25] |
Thornton JW, DeSalle R. Gene family evolution and homology: genomics meets phylogenetics[J]. Annu Rev Genomics Hum Genet, 2000, 1: 41-73.
pmid: 11701624 |
[26] | 罗传英. 草莓泛素结合酶基因家族鉴定和调控果实成熟的功能初探[D]. 雅安: 四川农业大学, 2022. |
Luo CY. Identification of ubiquitin conjugating enzyme gene family and functional analysis of regulating fruit ripening in strawberry[D]. Ya'an: Sichuan Agricultural University, 2022. | |
[27] | Wang YY, Wang WH, Cai JH, et al. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening[J]. Genome Biol, 2014, 15(12): 548. |
[28] | 王园, 王甲水, 谢学立, 等. 香蕉泛素结合酶基因与果实成熟关系的研究[J]. 园艺学报, 2010, 37(5): 705-712. |
Wang Y, Wang JS, Xie XL, et al. Studies of the relationship between MaUCE1 and banana fruit ripening[J]. Acta Hortic Sin, 2010, 37(5): 705-712. | |
[29] | Chung E, Cho CW, So HA, et al. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis[J]. PLoS One, 2013, 8(6): e66056. |
[30] | Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis[J]. Plant Mol Biol, 2010, 72(4/5): 357-367. |
[31] | Wan XR, Mo AQ, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. J Biosci Bioeng, 2011, 111(4): 478-484. |
[32] | Gong M, Wang H, Chen MJ, et al. A newly discovered ubiquitin-conjugating enzyme E2 correlated with the cryogenic autolysis of Volvariella volvacea[J]. Gene, 2016, 583(1): 58-63. |
[1] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[2] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[3] | 胡永波, 雷雨田, 杨永森, 陈馨, 林黄昉, 林碧英, 刘爽, 毕格, 申宝营. 黄瓜和南瓜Bcl-2相关抗凋亡家族全基因组鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(6): 219-237. |
[4] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[5] | 李博静, 郑腊梅, 吴乌云, 高飞, 周宜君. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202. |
[6] | 王健, 杨莎, 孙庆文, 陈宏宇, 杨涛, 黄园. 金钗石斛bHLH转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(6): 203-218. |
[7] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
[8] | 杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190. |
[9] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[10] | 侯雅琼, 郎红珊, 闻蒙蒙, 谷易云, 朱润洁, 汤晓丽. 猕猴桃AcHSP20基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 167-178. |
[11] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[12] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[13] | 郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11. |
[14] | 娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121. |
[15] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||