生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 152-160.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1127
王玉书1(), 赵琳琳1, 赵爽1, 胡琦1, 白慧霞1, 王欢2, 曹业萍1, 范震宇1
收稿日期:
2023-12-01
出版日期:
2024-06-26
发布日期:
2024-06-24
作者简介:
王玉书,女,博士,教授,研究方向:园艺植物分子育种;E-mail: wangys1019@126.com
基金资助:
WANG Yu-shu1(), ZHAO Lin-lin1, ZHAO Shuang1, HU Qi1, BAI Hui-xia1, WANG Huan2, CAO Ye-ping1, FAN Zhen-yu1
Received:
2023-12-01
Published:
2024-06-26
Online:
2024-06-24
摘要:
【目的】 细胞色素P450家族是十字花科植物硫苷合成重要的酶系,其中CYP83亚家族主要参与核心结构的合成,旨在探究大白菜(Brassica rapa ssp. pekinensis)CYP83B1基因的功能。【方法】 利用RT-PCR技术克隆BrCYP83B1基因,通过生物信息学软件分析其编码蛋白理化性质、同源性及启动子顺式作用元件,利用RT-qPCR技术分析BrCYP83B1的表达模式,并构建其植物超表达载体。【结果】 BrCYP83B1 cDNA序列全长为1 500 bp,编码499个氨基酸,编码蛋白属于细胞色素P450超家族,主要定位于细胞质,二级结构主要由α-螺旋和无规则卷曲构成,与甘蓝型油菜、青花菜的CYP83B1蛋白具有较高的同源性。启动子分析表明,该基因启动子区域包含水杨酸、脱落酸及茉莉酸甲酯等激素响应的顺式作用元件,说明BrCYP83B1基因表达可能受激素调控。RT-qPCR分析结果表明,BrCYP83B1基因在大白菜的根、茎、叶、花和果中均有表达,且以叶中的表达量最高;茉莉酸甲酯够显著促进该基因的表达,而水杨酸处理对其表达具有一定的抑制作用,脱落酸处理下基因先上调后又下调。【结论】 BrCYP83B1可能参与大白菜对激素的响应调控。
王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160.
WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage[J]. Biotechnology Bulletin, 2024, 40(6): 152-160.
引物名称Primer name | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
BrCYP83B1-F | GC GTCGACATGGATCTCTTCTTGATTATTGCCG | 片段扩增Fragment amplification |
BrCYP83B1-R | G GAATTCTCAAATGTGCGTCCTTGGTGC | 片段扩增Fragment amplification |
RT-CYP83B1-F | CGCAAGTTTCCGACCCGTTAGAG | 荧光定量PCR RT-qPCR |
RT-CYP83B1-R | ACAGTTGGTGAAGGACAAGAGAAGC | 荧光定量PCR RT-qPCR 荧光定量PCR RT-qPCR |
RT-BrActin-F | GGAGCTGAGAGATTCCGTTG | |
RT-BrActin-R | GAACCACCACTGAGGACGAT | 荧光定量PCR RT-qPCR |
表1 本研究所用的引物
Table 1 Primer used in this study
引物名称Primer name | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
BrCYP83B1-F | GC GTCGACATGGATCTCTTCTTGATTATTGCCG | 片段扩增Fragment amplification |
BrCYP83B1-R | G GAATTCTCAAATGTGCGTCCTTGGTGC | 片段扩增Fragment amplification |
RT-CYP83B1-F | CGCAAGTTTCCGACCCGTTAGAG | 荧光定量PCR RT-qPCR |
RT-CYP83B1-R | ACAGTTGGTGAAGGACAAGAGAAGC | 荧光定量PCR RT-qPCR 荧光定量PCR RT-qPCR |
RT-BrActin-F | GGAGCTGAGAGATTCCGTTG | |
RT-BrActin-R | GAACCACCACTGAGGACGAT | 荧光定量PCR RT-qPCR |
图3 BrCYP83B1蛋白的二级结构(A)和三级结构(B)预测 A图中大写字母表示BrCYP83B1蛋白氨基酸序列;小写字母代表不同的二级结构,h 代表α-螺旋,c 代表无规则卷曲,e 代表延伸链,t 代表β 转角
Fig. 3 Prediction of secondary(A)and tertiary structure(B)of BrCYP83B1 protein Capital letters indicate amino acid sequence of BrCYP83B1 protein. Lowercase letters indicate different secondary structures, where h refers to α helix, c to random coil, e to extended strand, and t to β turn
图4 BrCYP83B1与其他植物同源蛋白序列比对 BnCYP83B1:甘蓝型油菜,CDY35791.1;RsCYP83B1:萝卜,CDY35791.1;AtCYP83B1:拟南芥,NP_194878.1;BoCYP83B1 :青花菜,APZ76511.1;ItCYP83B1:菘蓝,APY26702.1;EsCYP83B1:盐芥,XP_006396006.1;EvCYP83B1:芝麻菜,AGS49168.1;CrCYP83B1:荠菜,XP_006285988.1;ThCYP83B1:醉蝶花,XP_010530341.1;BcCYP83B1:小白菜,HM347235.1;图中黑色、粉色及蓝色分别代表氨基酸完全保守、部分保守及相似
Fig. 4 Multiple sequence alignment of BrCYP83B1 with its homologous protein from other plant species+ BnCYP83B1: Brassica napus, CDY35791.1; RsCYP83B1: Raphanus sativus, CDY35791.1; AtCYP83B1: Arabidopsis thaliana, NP_194878.1; BoCYP83B1: Brassica oleracea var. italica, APZ76511.1; ItCYP83B1: Isatis tinctoria, APY26702.1; EsCYP83B1: Eutrema salsugineum, XP_006396006.1; EvCYP83B1: Eruca vesicaria subsp. sativa, AGS49168.1; CrCYP83B1: Capsella rubella, XP_006285988.1; ThCYP83B1: Tarenaya hassleriana, XP_010530341.1; BcCYP83B1: Brassica rapa subsp. chinensis, HM347235.1. Amino acids highlighted in black, pink, and blue respectively represent residues completely conserved, partially conserved and similar
元件名称Name of element | 序列Sequence(5'-3') | 元件类型Type of element | 数量Amount |
---|---|---|---|
TGACG-motif | TGACG | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness | 3 |
CGTCA-motif | CGTCA | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness | 2 |
GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
ABRE | AACCCGG | 脱落酸响应元件Cis-acting element involved in the abscisic acid responsiveness | 1 |
Box 4 | ATTAAT | 光响应元件Light responsive element | 1 |
G-Box | CACGTT | 光响应元件Light responsive element | 1 |
GARE-motif | TCTGTTG | 赤霉素响应元件Gibberellin-responsive element | 1 |
MRE | AACCTAA | 光响应元件Light responsive element | 1 |
TCA-element | CCATCTTTTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | 1 |
表2 BrCYP83B1启动子上游元件
Table 2 Upstream elements in BrCYP83B1 promoter
元件名称Name of element | 序列Sequence(5'-3') | 元件类型Type of element | 数量Amount |
---|---|---|---|
TGACG-motif | TGACG | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness | 3 |
CGTCA-motif | CGTCA | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness | 2 |
GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
ABRE | AACCCGG | 脱落酸响应元件Cis-acting element involved in the abscisic acid responsiveness | 1 |
Box 4 | ATTAAT | 光响应元件Light responsive element | 1 |
G-Box | CACGTT | 光响应元件Light responsive element | 1 |
GARE-motif | TCTGTTG | 赤霉素响应元件Gibberellin-responsive element | 1 |
MRE | AACCTAA | 光响应元件Light responsive element | 1 |
TCA-element | CCATCTTTTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | 1 |
图6 BrCYP83B1基因表达模式 A:BrCYP83B1在不同组织中表达;B:BrCYP83B1在MeJA、SA、ABA处理下表达。不同小写字母表示表达量在 P<0.05水平上差异显著
Fig. 6 Expression pattern of BrCYP83B1 A: Expression of BrCYP83B1 in different tissues. B: Expression of BrCYP83B1 treated with MeJA, SA and ABA. Different lowercase letters indicate significant differences in relative expression at the P<0.05 level
图7 植物表达载体双酶切及农杆菌菌液PCR电泳检测 M:DNA marker;1:双酶切产物;2:农杆菌菌液PCR产物
Fig. 7 Electrophoretic detection on double enzyme digestion of plant expression vector and PCR of Agro-bacterium tumefaciens liquid M: DNA marker; 1: double digestion products; 2: PCR products of Agrobacterium tumefaciens liquid
[1] |
Kim YB, Chun JH, Kim HR, et al. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions[J]. Nat Prod Commun, 2014, 9(4): 533-537.
pmid: 24868877 |
[2] | Artemyeva AM, Solovyeva AE. Quality evaluation of some cultivar types of leafy Brassica rapa[J]. Acta Hortic, 2006(706): 121-128. |
[3] |
杜海, 冉凤, 刘静, 等. 拟南芥硫苷生物合成相关基因的组织和胁迫诱导表达谱的全基因组分析[J]. 中国农业科学, 2016, 49(15): 2879-2897.
doi: 10.3864/j.issn.0578-1752.2016.15.003 |
Du H, Ran F, Liu J, et al. Genome-wide expression analysis of glucosinolate biosynthetic genes in Arabidopsis across diverse tissues and stresses induction[J]. Sci Agric Sin, 2016, 49(15): 2879-2897. | |
[4] | 雷建军, 陈长明, 陈国菊, 等. 硫苷及其生物合成分子生物学机理研究进展[J]. 华南农业大学学报, 2019, 40(5): 59-70. |
Lei JJ, Chen CM, Chen GJ, et al. Progress in glucosinolates and its molecular mechanism of biosynthesis[J]. J South China Agric Univ, 2019, 40(5): 59-70. | |
[5] | 秦晗, 张文姗, 王猛, 等. 四个芸薹属物种硫苷含量与种类分析及特殊硫苷成分的种间导入[J]. 植物遗传资源学报, 2020, 21(1): 94-104. |
Qin H, Zhang WS, Wang M, et al. Characterizing glucosinolates of four Brassica species and interspecific transferring of specific glucosinolates[J]. J Plant Genet Resour, 2020, 21(1): 94-104. | |
[6] |
Nintemann SJ, Hunziker P, Andersen TG, et al. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates[J]. Physiol Plant, 2018, 163(2): 138-154.
doi: 10.1111/ppl.12672 pmid: 29194649 |
[7] | Zhu B, Wang ZZ, Yang J, et al. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi(Brassica rapa L. ssp. chinensis var. communis(N. Tsen & S.H. Lee)Hanelt)[J]. Int J Mol Sci, 2012, 13(5): 5832-5843. |
[8] |
Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proc Natl Acad Sci USA, 2000, 97(5): 2379-2384.
doi: 10.1073/pnas.040569997 pmid: 10681464 |
[9] |
Bak S, Tax FE, Feldmann KA, et al. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell, 2001, 13(1): 101-111.
doi: 10.1105/tpc.13.1.101 pmid: 11158532 |
[10] | 程文财, 丁聪聪, 赵云, 等. 油菜BnCYP83B1基因的克隆与生长素相互作用的研究[J]. 四川大学学报: 自然科学版, 2014, 51(5): 1092-1098. |
Cheng WC, Ding CC, Zhao Y, et al. Cloning and mRNA expression of BnCYP83B1 gene under 2, 4-D hormone in Brassica napus[J]. J Sichuan Univ Nat Sci Ed, 2014, 51(5): 1092-1098. | |
[11] | 赵桂红, 石宏, 张妮妮, 等. 菘蓝CYP83B1基因的克隆与表达分析[J]. 植物科学学报, 2017, 35(1): 64-72. |
Zhao GH, Shi H, Zhang NN, et al. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Sci J, 2017, 35(1): 64-72. | |
[12] | 徐蕊. 西兰花CYP83B1基因的克隆及功能鉴定[D]. 哈尔滨: 东北农业大学, 2018. |
Xu R. Cloning and functional identification of BoCYP83B1 from broccoli(Brassica oleracea var. italica)[D]. Harbin: Northeast Agricultural University, 2018. | |
[13] | Zang YX, Lim MH, Park BS, et al. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1[J]. Mol Cells, 2008, 25(2): 231-241. |
[14] |
Bridge LJ, Mirams GR, Kieffer ML, et al. Distinguishing possible mechanisms for auxin-mediated developmental control in Arabidopsis: models with two Aux/IAA and ARF proteins, and two target gene-sets[J]. Math Biosci, 2012, 235(1): 32-44.
doi: 10.1016/j.mbs.2011.10.005 pmid: 22067512 |
[15] |
González-Romero ME, Rivera C, Cancino K, et al. Bioengineering potato plants to produce benzylglucosinolate for improved broad-spectrum pest and disease resistance[J]. Transgenic Res, 2021, 30(5): 649-660.
doi: 10.1007/s11248-021-00255-w pmid: 33956271 |
[16] | 赵爽, 周羽琪, 杨旭妍, 等. 硒硫互作对白菜芽苗菜硫代葡萄糖苷含量及抗氧化性的影响[J]. 食品科学, 2023, 44(1): 22-29. |
Zhao S, Zhou YQ, Yang XY, et al. Effect of selenium and sulfur interaction on the glucosinolate content and antioxidant activity of sprouts of Chinese cabbage[J]. Food Sci, 2023, 44(1): 22-29. | |
[17] | Connolly EL, Sim M, Travica N, et al. Glucosinolates from cruciferous vegetables and their potential role in chronic disease: investigating the preclinical and clinical evidence[J]. Front Pharmacol, 2021, 12: 767975. |
[18] | Zang YX, Ge JL, Huang LH, et al. Leaf and root glucosinolate profiles of Chinese cabbage(Brassica rapa ssp. pekinensis)as a systemic response to methyl jasmonate and salicylic acid elicitation[J]. J Zhejiang Univ Sci B, 2015, 16(8): 696-708. |
[19] | Harun S, Abdullah-Zawawi MR, Goh HH, et al. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana[J]. J Agric Food Chem, 2020, 68(28): 7281-7297. |
[20] | Sun B, Jiang M, Yuan Q, et al. Bioinformatics analysis of the gene CYP83B1 in cabbage(Brassica oleracea var. capitata)[C]// Proceedings of the 2018 3rd International Workshop on Materials Engineering and Computer Sciences(IWMECS 2018). January 27-28, 2018. Jinan, China. Paris, France: Atlantis Press, 2018: 328-331. |
[21] |
Hoecker U, Toledo-Ortiz G, Bender J, et al. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis[J]. Planta, 2004, 219(2): 195-200.
pmid: 14963708 |
[22] | Wang JW, Mao SX, Wu Q, et al. Effects of LED illumination spectra on glucosinolate and sulforaphane accumulation in broccoli seedlings[J]. Food Chem, 2021, 356: 129550. |
[23] | 费丹丹, 王军伟, 吴小媚, 等. 细胞色素P450基因家族参与植物硫代葡萄糖苷生物合成的研究进展[J]. 中国蔬菜, 2023(5): 30-41. |
Fei DD, Wang JW, Wu XM, et al. Research progress of cytochrome P450 gene family taking part in biosynthesis of plant glucosinolates[J]. China Veg, 2023(5): 30-41. | |
[24] | Xu R, Kong WW, Peng YF, et al. Identification and expression pattern analysis of the glucosinolate biosynthetic gene BoCYP83B1 from broccoli[J]. Biol Plant, 2018, 62(3): 521-533. |
[25] |
Mewis I, Appel HM, Hom A, et al. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects[J]. Plant Physiol, 2005, 138(2): 1149-1162.
doi: 10.1104/pp.104.053389 pmid: 15923339 |
[26] | Fritz VA, Justen VL, Bode AM, et al. Glucosinolate enhancement in cabbage induced by jasmonic acid application[J]. HortScience, 2010, 45(8): 1188-1191. |
[27] | Pérez-Balibrea S, Moreno DA, García-Viguera C. Improving the phytochemical composition of broccoli sprouts by elicitation[J]. Food Chem, 2011, 129(1): 35-44. |
[28] | Sun B, Yan HZ, Zhang F, et al. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale[J]. Food Res Int, 2012, 48(2): 359-366. |
[29] |
Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana[J]. Genetics, 2002, 161(4): 1685-1696.
doi: 10.1093/genetics/161.4.1685 pmid: 12196411 |
[30] | Wang ZY, Yang RQ, Guo LP, et al. Effects of abscisic acid on glucosinolate content, isothiocyanate formation and myrosinase activity in cabbage sprouts[J]. Int J Food Sci Tech, 2015, 50(8): 1839-1846. |
[31] | 陈微. 外源激素对萝卜肉质根硫苷和萝卜硫素含量的影响[D]. 南京: 南京农业大学, 2017. |
Chen W. Effect of exogenous hormone on the contents of glucosinolate and sulforaphane in radish(Raphanus sativus L.)taproot[D]. Nanjing: Nanjing Agricultural University, 2017. |
[1] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[2] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[3] | 李博静, 郑腊梅, 吴乌云, 高飞, 周宜君. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202. |
[4] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[5] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[6] | 娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121. |
[7] | 杜泽光, 任少文, 张凤勤, 李梅兰, 李改珍, 齐仙惠. 大白菜BrMLP328的克隆、表达及功能验证[J]. 生物技术通报, 2024, 40(4): 122-129. |
[8] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
[9] | 肖雅茹, 贾婷婷, 罗丹, 武喆, 李丽霞. 黄瓜CsERF025L转录因子的克隆及表达分析[J]. 生物技术通报, 2024, 40(4): 159-166. |
[10] | 刘换换, 杨立春, 李火根. 北美鹅掌楸LtMYB305基因的克隆及功能分析[J]. 生物技术通报, 2024, 40(4): 179-188. |
[11] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[12] | 杨伟成, 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱, 李润植. 陆地棉FAX家族的全基因组鉴定及GhFAX1的功能分析[J]. 生物技术通报, 2024, 40(3): 155-169. |
[13] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[14] | 任延靖, 张鲁刚, 赵孟良, 李江, 邵登魁. 白菜种子cDNA酵母文库的构建及BrTTG1互作蛋白的筛选及分析[J]. 生物技术通报, 2024, 40(2): 223-232. |
[15] | 朱毅, 柳唐镜, 宫国义, 张洁, 王晋芳, 张海英. 西瓜ClPP2C3克隆及表达分析[J]. 生物技术通报, 2024, 40(1): 243-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||