生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 203-214.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1047
吴迪(), 游小凤, 郑亦铮, 林楠, 张燕燕, 魏艺聪()
收稿日期:
2023-11-09
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
魏艺聪,男,博士,副教授,研究方向:中药资源、中药药理;E-mail: 2007047@fjtcm.edu.cn作者简介:
吴迪,女,硕士研究生,研究方向:中药资源、中药药理;E-mail: 827820547@qq.com
基金资助:
WU Di(), YOU Xiao-feng, ZHENG Yi-zheng, LIN Nan, ZHANG Yan-yan, WEI Yi-cong()
Received:
2023-11-09
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】为了探究草珊瑚[Sarcandra glabra(thunb)nakai]不同器官中内源激素对类胡萝卜素差异积累的可能调控机制。【方法】通过代谢组学方法分析草珊瑚中内源激素和类胡萝卜素代谢物在不同器官间的差异分布情况,结合转录组学技术挖掘草珊瑚类胡萝卜素相关差异酶基因,进一步预测参与调控差异酶基因的转录因子及其激素相关顺式响应元件,从而分析内源激素对类胡萝卜素差异积累的可能调控作用。【结果】吲哚-3-羧酸(indole-3-carboxylic acid)、反式茉莉酸[(-)-jasmonic acid]、二氢茉莉酮酸甲酯(ethyl dihydrojasmonate)、油菜素甾酮(castasterone)、油菜素内酯(brassinolide)等7种内源激素在叶中的含量更高,与角黄素(canthaxanthin)、海胆酮(echinenone)、新黄质(neoxanthin)和念珠藻黄素(nostoxanthin)等8种差异代谢物等富集部位一致;而脱落酸(abscisic acid,ABA)、赤霉素4, 5-甲氧基水杨酸(gibberellin 4,5-methoxysalicylic acid)、二氢茉莉酸(dihydrojasmonic acid)和5,6-二羟基吲哚(5,6-dihydroxyindole)在根中的含量更高,与脱落酸醛(abscisic aldehyde)、4,4'-二聚戊烯(4,4'-aiapolycopenedial)、花药黄质(antheraxanthin)这3种差异代谢物富集部位一致;关键转录因子MYB106、SPL1、NAC015、ERF064、WRKY44、BHLH116可通过响应AUX、SA、GA、ABA、Me_JA等植物激素的刺激,参与调控类胡萝卜素合成途径的DXS、VDE、ABA2、AOG、ZEP、CYP97C1、DWARF27、CRTISO、LCYB、PSY这10种代谢酶的表达。实时荧光定量 PCR(quantitative real-time polymerase chain reaction, RT-qPCR)结果表明,随机选取的8个差异基因表达趋势与转录组测序结果一致。【结论】筛选出草珊瑚叶和根与类胡萝卜素相关的15 种差异内源激素与 11 种差异代谢物,预测了6种转录因子参与调控10 种代谢酶。
吴迪, 游小凤, 郑亦铮, 林楠, 张燕燕, 魏艺聪. 草珊瑚中类胡萝卜素合成的内源激素调控机制分析[J]. 生物技术通报, 2024, 40(5): 203-214.
WU Di, YOU Xiao-feng, ZHENG Yi-zheng, LIN Nan, ZHANG Yan-yan, WEI Yi-cong. Analysis of Endogenous Hormone Regulation Mechanism for Carotenoid Synthesis in Sarcandra glabra[J]. Biotechnology Bulletin, 2024, 40(5): 203-214.
基因 Gene | 正向引物 Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
CAC | TCCGACAAATTGGAGGTTGC | TGCTGCTGACAACAATCACG |
DXS | GCCTTGAACGGACTCTTAGAC | AGGTGGAGAGCATCCTTGTT |
PSY | GGCGTCCTTGTTGTTGTACC | ATGAGTGCTCTAGTGTAGGCTATG |
NCED | CTCCAAGGCGTGTTCTATCG | CTCCAAGGCGTGTTCTATCG |
VDE | CACGACAACGAGTACCTTCAC | TGACAGCACCACCATATCCA |
PDS | ACGAGTACCAGGTGTTGTTCTA | AATCAGTTTGCCAGCATTCATTG |
LYCB | GGAAGATATACAGGAGAGGATGGT | TCTGAGGAAGCACTGGAAGT |
ZEP | GCTTGGAGGCAGAGTATTGAC | GCAGCCATTCTAGCCATTCC |
CYP97C1 | GATGAGAGCACAACAAGAGGTT | CGCCTTATTAACACTGGTGGAT |
表1 荧光定量PCR引物
Table 1 Primers used for real-time quantitative RT-PCR
基因 Gene | 正向引物 Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
CAC | TCCGACAAATTGGAGGTTGC | TGCTGCTGACAACAATCACG |
DXS | GCCTTGAACGGACTCTTAGAC | AGGTGGAGAGCATCCTTGTT |
PSY | GGCGTCCTTGTTGTTGTACC | ATGAGTGCTCTAGTGTAGGCTATG |
NCED | CTCCAAGGCGTGTTCTATCG | CTCCAAGGCGTGTTCTATCG |
VDE | CACGACAACGAGTACCTTCAC | TGACAGCACCACCATATCCA |
PDS | ACGAGTACCAGGTGTTGTTCTA | AATCAGTTTGCCAGCATTCATTG |
LYCB | GGAAGATATACAGGAGAGGATGGT | TCTGAGGAAGCACTGGAAGT |
ZEP | GCTTGGAGGCAGAGTATTGAC | GCAGCCATTCTAGCCATTCC |
CYP97C1 | GATGAGAGCACAACAAGAGGTT | CGCCTTATTAACACTGGTGGAT |
化合物 Compound | 分子式 Formula | 离子模式 ESM | 质荷比 m/z | 保留时间 Retention/min | 二级鉴定分数 MS2 score |
---|---|---|---|---|---|
吲哚-3-羧酸 Indole-3-carboxylic acid | C9H7NO2 | - | 160.04 | 1.84 | 43.60 |
吲哚 Indole | C8H7N | - | 152.01 | 1.88 | 63.40 |
吲哚-5-羧酸 Indole-5-carboxylic acid | C9H7NO2 | - | 160.04 | 2.05 | 33.60 |
3-甲基羟基吲哚 3-Methyldioxyindole | C9H9NO2 | - | 162.06 | 2.27 | 38.70 |
5,6-二羟基吲哚 5,6-Dihydroxyindole | C8H7NO2 | - | 297.09 | 2.67 | 27.00 |
吲哚-3-甲醛 Indole-3-carboxaldehyde | C9H7NO | + | 110.04 | 3.88 | 0.00 |
5,6-吲哚醌-2-羧酸 5,6-Indolequinone-2-carboxylic acid | C9H5NO4 | + | 383.05 | 1.81 | 22.00 |
1-萘乙酸乙酯 Ethyl 1-naphthylacetic acid | C14H14O2 | + | 215.11 | 3.60 | 34.30 |
赤霉素3 Gibberellin A3 | C19H22O6 | - | 391.15 | 3.16 | 74.30 |
赤霉素4 Gibberellin A4 | C19H24O5 | - | 663.29 | 6.78 | 78.10 |
赤霉素36 Gibberellin A36 | C20H26O6 | + | 345.17 | 7.76 | 66.80 |
邻β-d-葡糖基玉米素 O-Beta-D-glucosylzeatin | C16H23N5O6 | - | 402.13 | 3.65 | 74.30 |
油菜素内酯 Brassinolide | C28H48O6 | + | 445.34 | 10.88 | 53.40 |
二氢茉莉酸 Dihydrojasmonic acid | C12H20O3 | - | 233.12 | 4.42 | 36.50 |
(-)-茉莉酸(-)-Jasmonic acid | C12H18O3 | + | 175.11 | 4.99 | 66.60 |
茉莉酸 Jasmonic acid | C12H18O3 | + | 175.11 | 7.34 | 69.00 |
5-甲氧基水杨酸 5-Methoxysalicylic acid | C8H8O4 | - | 167.04 | 1.35 | 86.90 |
赤霉素20 Gibberellin A20 | C19H24O5 | - | 353.15 | 7.05 | 47.80 |
赤霉素8 Gibberellin A8 | C19H24O7 | + | 387.13 | 4.17 | 66.10 |
赤霉素19 Gibberellin A19 | C20H26O6 | + | 385.17 | 6.84 | 70.20 |
赤霉素9 Gibberellin A9 | C19H24O4 | + | 317.18 | 8.95 | 42.20 |
(+)-脱落酸(+)-Abscisic acid | C15H20O4 | + | 247.13 | 5.70 | 81.20 |
油菜素甾酮 Castasterone | C28H48O5 | + | 447.34 | 10.77 | 60.70 |
褪黑素 Melatonin | C13H16N2O2 | - | 277.12 | 2.80 | 29.50 |
对水杨酸 P-salicylic acid | C7H6O3 | - | 137.03 | 1.56 | 28.90 |
茉莉酸甲酯 Methyl jasmonate | C13H20O3 | + | 207.14 | 3.00 | 45.30 |
二氢茉莉酮酸甲酯 Methyl dihydrojasmonate | C13H22O3 | - | 225.15 | 4.17 | 25.80 |
2-萘乙酸 2-Naphthylacetic acid | C12H10O2 | + | 187.08 | 8.05 | 33.90 |
玉米素 Zeatin | C10H13N5O | + | 220.12 | 1.57 | 26.50 |
玉米素核苷 cis-Zeatin riboside | C15H21N5O5 | + | 374.15 | 3.43 | 78.90 |
3-吲哚丙烯酸 3-Indoleacrylic acid | C11H9NO2 | - | 208.03 | 3.07 | 43.60 |
表2 草珊瑚叶和根中内源激素
Table 2 Endogenous hormones in the leaves and roots of S. glabra
化合物 Compound | 分子式 Formula | 离子模式 ESM | 质荷比 m/z | 保留时间 Retention/min | 二级鉴定分数 MS2 score |
---|---|---|---|---|---|
吲哚-3-羧酸 Indole-3-carboxylic acid | C9H7NO2 | - | 160.04 | 1.84 | 43.60 |
吲哚 Indole | C8H7N | - | 152.01 | 1.88 | 63.40 |
吲哚-5-羧酸 Indole-5-carboxylic acid | C9H7NO2 | - | 160.04 | 2.05 | 33.60 |
3-甲基羟基吲哚 3-Methyldioxyindole | C9H9NO2 | - | 162.06 | 2.27 | 38.70 |
5,6-二羟基吲哚 5,6-Dihydroxyindole | C8H7NO2 | - | 297.09 | 2.67 | 27.00 |
吲哚-3-甲醛 Indole-3-carboxaldehyde | C9H7NO | + | 110.04 | 3.88 | 0.00 |
5,6-吲哚醌-2-羧酸 5,6-Indolequinone-2-carboxylic acid | C9H5NO4 | + | 383.05 | 1.81 | 22.00 |
1-萘乙酸乙酯 Ethyl 1-naphthylacetic acid | C14H14O2 | + | 215.11 | 3.60 | 34.30 |
赤霉素3 Gibberellin A3 | C19H22O6 | - | 391.15 | 3.16 | 74.30 |
赤霉素4 Gibberellin A4 | C19H24O5 | - | 663.29 | 6.78 | 78.10 |
赤霉素36 Gibberellin A36 | C20H26O6 | + | 345.17 | 7.76 | 66.80 |
邻β-d-葡糖基玉米素 O-Beta-D-glucosylzeatin | C16H23N5O6 | - | 402.13 | 3.65 | 74.30 |
油菜素内酯 Brassinolide | C28H48O6 | + | 445.34 | 10.88 | 53.40 |
二氢茉莉酸 Dihydrojasmonic acid | C12H20O3 | - | 233.12 | 4.42 | 36.50 |
(-)-茉莉酸(-)-Jasmonic acid | C12H18O3 | + | 175.11 | 4.99 | 66.60 |
茉莉酸 Jasmonic acid | C12H18O3 | + | 175.11 | 7.34 | 69.00 |
5-甲氧基水杨酸 5-Methoxysalicylic acid | C8H8O4 | - | 167.04 | 1.35 | 86.90 |
赤霉素20 Gibberellin A20 | C19H24O5 | - | 353.15 | 7.05 | 47.80 |
赤霉素8 Gibberellin A8 | C19H24O7 | + | 387.13 | 4.17 | 66.10 |
赤霉素19 Gibberellin A19 | C20H26O6 | + | 385.17 | 6.84 | 70.20 |
赤霉素9 Gibberellin A9 | C19H24O4 | + | 317.18 | 8.95 | 42.20 |
(+)-脱落酸(+)-Abscisic acid | C15H20O4 | + | 247.13 | 5.70 | 81.20 |
油菜素甾酮 Castasterone | C28H48O5 | + | 447.34 | 10.77 | 60.70 |
褪黑素 Melatonin | C13H16N2O2 | - | 277.12 | 2.80 | 29.50 |
对水杨酸 P-salicylic acid | C7H6O3 | - | 137.03 | 1.56 | 28.90 |
茉莉酸甲酯 Methyl jasmonate | C13H20O3 | + | 207.14 | 3.00 | 45.30 |
二氢茉莉酮酸甲酯 Methyl dihydrojasmonate | C13H22O3 | - | 225.15 | 4.17 | 25.80 |
2-萘乙酸 2-Naphthylacetic acid | C12H10O2 | + | 187.08 | 8.05 | 33.90 |
玉米素 Zeatin | C10H13N5O | + | 220.12 | 1.57 | 26.50 |
玉米素核苷 cis-Zeatin riboside | C15H21N5O5 | + | 374.15 | 3.43 | 78.90 |
3-吲哚丙烯酸 3-Indoleacrylic acid | C11H9NO2 | - | 208.03 | 3.07 | 43.60 |
图1 草珊瑚叶和根中差异内源激素相对含量热图
Fig. 1 Heat map of the relative contents of endogenous hormones in the leaves and roots of S. glabra L1-6: Leaves(samples 1 to 6). R1-6: Root(samples 1 to 6). The same below
代谢酶Enzyme name | 缩写Abbreviation | KO 编码KO ID | unigene数量Number of unigene |
---|---|---|---|
1-脱氧-D-木酮糖5-磷酸合酶1-Deoxy-D-xylulose 5-phosphate synthase | DXS | K01662 | 3 |
15-cis-phytoene合成酶15-cis-Phytoene synthase | PSY | K02291 | 1 |
15 - cis - Phytoene去饱和酶15-cis-Phytoene desaturase | PDS | K02293 | 1 |
前番茄红素异构酶Prolycopene isomerase | CRTISO | K09835 | 1 |
番茄红素β-环化酶Lycopene beta-cyclase | LCYB | K06443 | 1 |
番茄红素环化酶Lycopene epsilon-cyclase | LCYE | K06444 | 1 |
胡萝卜素羟基Beta-ring hydroxylase | CHYB | K15747 | 2 |
类胡萝卜素ε-羟化酶Carotenoid epsilon hydroxylase | CYP97C1 | K09837 | 1 |
β -胡萝卜素异构酶Beta-carotene isomerase | DWARF27 | K17911 | 3 |
内酯合成酶Carlactone synthase | CCD8 | K17913 | 1 |
玉米黄质环氧化酶Zeaxanthin epoxidase | ZEP | K09838 | 3 |
紫黄质脱环氧化酶Violaxanthin de-epoxidase | VDE | K09839 | 1 |
9-顺式-环氧类胡萝卜素二加氧酶9-cis-Epoxycarotenoid dioxygenase | NCED | K09840 | 2 |
黄氧素脱氢酶Xanthoxin dehydrogenase | ABA2 | K09841 | 3 |
(+)- 脱落酸8’羟化酶(+)-Abscisic acid 8’-hydroxylase | CYP707A | K09843 | 1 |
脱落酸β-葡萄糖基转移酶Abscisate beta-glucosyltransferase | AOG | K14595 | 1 |
表3 草珊瑚叶和根中类胡萝卜素相关差异代谢酶基因
Table 3 Differential metabolic enzyme genes related to carotenoids in the leaves and roots of S. glabra
代谢酶Enzyme name | 缩写Abbreviation | KO 编码KO ID | unigene数量Number of unigene |
---|---|---|---|
1-脱氧-D-木酮糖5-磷酸合酶1-Deoxy-D-xylulose 5-phosphate synthase | DXS | K01662 | 3 |
15-cis-phytoene合成酶15-cis-Phytoene synthase | PSY | K02291 | 1 |
15 - cis - Phytoene去饱和酶15-cis-Phytoene desaturase | PDS | K02293 | 1 |
前番茄红素异构酶Prolycopene isomerase | CRTISO | K09835 | 1 |
番茄红素β-环化酶Lycopene beta-cyclase | LCYB | K06443 | 1 |
番茄红素环化酶Lycopene epsilon-cyclase | LCYE | K06444 | 1 |
胡萝卜素羟基Beta-ring hydroxylase | CHYB | K15747 | 2 |
类胡萝卜素ε-羟化酶Carotenoid epsilon hydroxylase | CYP97C1 | K09837 | 1 |
β -胡萝卜素异构酶Beta-carotene isomerase | DWARF27 | K17911 | 3 |
内酯合成酶Carlactone synthase | CCD8 | K17913 | 1 |
玉米黄质环氧化酶Zeaxanthin epoxidase | ZEP | K09838 | 3 |
紫黄质脱环氧化酶Violaxanthin de-epoxidase | VDE | K09839 | 1 |
9-顺式-环氧类胡萝卜素二加氧酶9-cis-Epoxycarotenoid dioxygenase | NCED | K09840 | 2 |
黄氧素脱氢酶Xanthoxin dehydrogenase | ABA2 | K09841 | 3 |
(+)- 脱落酸8’羟化酶(+)-Abscisic acid 8’-hydroxylase | CYP707A | K09843 | 1 |
脱落酸β-葡萄糖基转移酶Abscisate beta-glucosyltransferase | AOG | K14595 | 1 |
图3 草珊瑚叶和根中类胡萝卜素相关差异代谢酶基因相对含量热图
Fig. 3 Heatmap of relative contents of carotenoid-related differential metabolic enzyme genes in the leaves and roots of S. glabra
图5 草珊瑚类胡萝卜素相关转录因子与差异代谢酶基因调控关系图
Fig. 5 Regulatory relationship between carotenoid-related transcription factors and differential metabolic enzyme genes in S. glabra
转录因子Transcription factor | 预测顺式作用元件Predicting cis-acting element | 差异内源激素变化Differential endogenous hormone changes(leaf/root) | 调控下游酶基因的表达趋势Regulating the expression trend of downstream enzyme genes(leaf/root) |
---|---|---|---|
MYB106 | SA、MeJA、GA、ABA | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
SPL1 | MeJA、GA、ABA、Auxin | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
NAC015 | SA、MeJA、GA | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
WRKY44 | ABA、MeJA、SA | ABA下调、SA下调 | ABA2、AOG、DWARF27下调 |
BHLH16 | ABA、Zein、SA、GA、MeJA | ABA下调、SA下调、GA下调 | ABA2、AOG、DWARF27下调 |
EFR064 | ABA、Zein、SA、GA | ABA下调、SA下调、GA下调 | ABA2、AOG、DWARF27下调 |
表4 草珊瑚类胡萝卜素生物合成途径“内源激素-转录因子-代谢酶基因表达”的调控关系
Table 4 Regulation relationship of carotenoid biosynthetic pathway “endogenous hormone-transcription factor-metabolic enzyme gene expression” in S. glabra
转录因子Transcription factor | 预测顺式作用元件Predicting cis-acting element | 差异内源激素变化Differential endogenous hormone changes(leaf/root) | 调控下游酶基因的表达趋势Regulating the expression trend of downstream enzyme genes(leaf/root) |
---|---|---|---|
MYB106 | SA、MeJA、GA、ABA | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
SPL1 | MeJA、GA、ABA、Auxin | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
NAC015 | SA、MeJA、GA | MeJA上调 | DXS、VDE、ZEP、CYP97C1、LCYB、PSY、CRTISO上调 |
WRKY44 | ABA、MeJA、SA | ABA下调、SA下调 | ABA2、AOG、DWARF27下调 |
BHLH16 | ABA、Zein、SA、GA、MeJA | ABA下调、SA下调、GA下调 | ABA2、AOG、DWARF27下调 |
EFR064 | ABA、Zein、SA、GA | ABA下调、SA下调、GA下调 | ABA2、AOG、DWARF27下调 |
图7 草珊瑚类胡萝卜素生物合成相关代谢酶基因的RT-qPCR验证
Fig. 7 RT-qPCR verification of carotenoid biosynthesis-related metabolic enzyme genes in S. glabra L: Leaves. R: Root. *P<0.05,**P<0.01,***P<0.001
[1] | 秦亚秋, 黄天擎, 刘鄂湖. 草珊瑚化学成分及活性研究概述[J]. 广东化工, 2023, 50(1): 94-95, 91. |
Qin YQ, Huang TQ, Liu EH. Research progress on chemical constituents and activity of sarcandrae herba[J]. Guangdong Chem Ind, 2023, 50(1): 94-95, 91. | |
[2] | 陈芳有, 陈志超, 罗永明. 草珊瑚化学成分及生物活性研究进展[J]. 中国中药杂志, 2022, 47(4): 872-879. |
Chen FY, Chen ZC, Luo YM. Research progress on chemical constituents and biological activities of Sarcandra glabra[J]. China J Chin Mater Med, 2022, 47(4): 872-879. | |
[3] | 韩倩, 武晓林. 肿节风化学成分和药理作用研究进展[J]. 吉林农业, 2017(8): 63-64. |
Han Q, Wu XL. Research progress on chemical constituents and pharmacological effects of Sarcandra glabra[J]. Agric Jilin, 2017(8): 63-64. | |
[4] | Zeng YL, Liu JY, Zhang Q, et al. The traditional uses, phytochemistry and pharmacology of Sarcandra glabra(thunb.) nakai, a Chinese herb with potential for development: review[J]. Front Pharmacol, 2021, 12: 652926. |
[5] | 蔡清楼, 陈玲芳. 草珊瑚的应用开发及市场前景探析[J]. 海峡药学, 2010, 22(10): 36-38. |
Cai QL, Chen LF. Application, development and market prospect of grass coral[J]. Strait Pharm J, 2010, 22(10): 36-38. | |
[6] |
陆晨飞, 高月霞, 黄河, 等. 植物类胡萝卜素代谢及调控研究进展[J]. 园艺学报, 2022, 49(12): 2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531 |
Lu CF, Gao YX, Huang H, et al. Carotenoid metabolism and regulation in plants[J]. Acta Hortic Sin, 2022, 49(12): 2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531 |
|
[7] | 朱运钦, 乔改梅, 王志强. 植物类胡萝卜素代谢调控的研究进展[J]. 分子植物育种, 2016, 14(2): 471-474. |
Zhu YQ, Qiao GM, Wang ZQ. Research advances on metabolism regulation of plant carotenoids[J]. Mol Plant Breed, 2016, 14(2): 471-474. | |
[8] |
Nisar N, Li L, Lu S, et al. Carotenoid metabolism in plants[J]. Mol Plant, 2015, 8(1): 68-82.
doi: 10.1016/j.molp.2014.12.007 pmid: 25578273 |
[9] | Sathasivam R, Radhakrishnan R, Kim JK, et al. An update on biosynthesis and regulation of carotenoids in plants[J]. S Afr N J Bot, 2021, 140: 290-302. |
[10] |
何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展[J]. 园艺学报, 2022, 49(5): 1162-1172.
doi: 10.16420/j.issn.0513-353x.2021-0623 |
He JJ, Fan YP. Progress in composition and metabolic regulation of carotenoids related to floral color[J]. Acta Hortic Sin, 2022, 49(5): 1162-1172.
doi: 10.16420/j.issn.0513-353x.2021-0623 |
|
[11] |
Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond[J]. J Integr Plant Biol, 2008, 50(7): 778-785.
doi: 10.1111/j.1744-7909.2008.00708.x |
[12] |
Sun TH, Yuan H, Cao HB, et al. Carotenoid metabolism in plants: the role of plastids[J]. Mol Plant, 2018, 11(1): 58-74.
doi: S1674-2052(17)30273-3 pmid: 28958604 |
[13] |
Hirschberg J. Carotenoid biosynthesis in flowering plants[J]. Curr Opin Plant Biol, 2001, 4(3): 210-218.
doi: 10.1016/s1369-5266(00)00163-1 pmid: 11312131 |
[14] | 张睿, 王秀娟, 高伟. 植物激素对次生代谢产物的调控研究[J]. 中国中药杂志, 2020, 45(17): 4205-4210. |
Zhang R, Wang XJ, Gao W. Regulation mechanism of plant hormones on secondary metabolites[J]. China J Chin Mater Med, 2020, 45(17): 4205-4210. | |
[15] | 许智宏, 薛红卫. 植物激素作用的分子机理[M]. 上海: 上海科学技术出版社, 2012. |
Xu ZH, Xue HW. Plant hormones: function and molecular mechanism[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012. | |
[16] | 高晨曦, 黄艳, 李晶, 等. 茶树新梢内源激素与叶片色泽形成的调控关系研究[J]. 茶叶科学, 2021, 41(6): 802-812. |
Gao CX, Huang Y, Li J, et al. Research on the regulation relationship between endogenous hormones in tea shoots and leaf color formation[J]. J Tea Sci, 2021, 41(6): 802-812. | |
[17] | 马贵芳. 外源水杨酸介导miRNA调控谷子叶酸及类胡萝卜素合成研究[D]. 太原: 山西农业大学, 2022. |
Ma GF. The researched on exogenous salicylic acid-mediated miRNA regulated folate and carotenoid metabolism in foxtail millet[D]. Taiyuan: Shanxi Agricultural University, 2022. | |
[18] |
罗秀芹, 薛晶晶, 蔡杰, 等. GA3处理对木薯类胡萝卜素生物合成的影响[J]. 热带作物学报, 2022, 43(2): 346-352.
doi: 10.3969/j.issn.1000-2561.2022.02.015 |
Luo XQ, Xue JJ, Cai J, et al. Effects of GA3 treatment on carotenoids biosynthesis in cassava[J]. Chin J Trop Crops, 2022, 43(2): 346-352. | |
[19] | 徐昊, 何伟伟, 李大婧, 等. 外源脱落酸对发芽玉米籽粒中类胡萝卜素合成的影响[J]. 食品科学, 2022, 43(18): 1-8. |
Xu H, He WW, Li DJ, et al. Effect of exogenous abscisic acid on carotenoid synthesis in germinated maize kernels[J]. Food Sci, 2022, 43(18): 1-8. | |
[20] | Simpson K, Quiroz LF, Rodriguez-Concepción M, et al. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot(Daucus carota)[J]. Front Plant Sci, 2016,7: 1344. |
[21] | Ampomah-Dwamena C, Tomes S, Thrimawithana AH, et al. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple(Malus × domestica)[J]. Front Plant Sci, 2022, 13: 967143. |
[22] | Srinivasan R, Babu S, Gothandam KM. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase(PDS)gene in Dunaliella salina V-101[J]. Bioresour Technol, 2017, 242: 311-318. |
[23] | Sun TH, Li L. Toward the ‘golden’ era: the status in uncovering the regulatory control of carotenoid accumulation in plants[J]. Plant Sci, 2020, 290: 110331. |
[24] | 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展[J]. 分子植物育种, 2021, 19(13): 4401-4408. |
Fan BL, Wang XY. Research progress of transcription factors regulating carotenoid synthesis pathway in plant[J]. Mol Plant Breed, 2021, 19(13): 4401-4408. | |
[25] | Zhu MK, Chen GP, Zhou S, et al. A new tomato NAC(NAM/ATAF1/2/CUC2)transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation[J]. Plant Cell Physiol, 2014, 55(1): 119-135. |
[26] | Zhou D, Shen YH, Zhou P, et al. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during Papaya fruit ripening[J]. Hortic Res, 2019, 6: 80. |
[27] |
Zhu KJ, Sun Q, Chen HY, et al. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061[J]. J Exp Bot, 2021, 72(8): 3137-3154.
doi: 10.1093/jxb/erab047 pmid: 33543285 |
[28] |
Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, et al. A kiwifruit(Actinidia deliciosa)R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation[J]. New Phytol, 2019, 221(1): 309-325.
doi: 10.1111/nph.15362 pmid: 30067292 |
[29] | Zhu LS, Liang SM, Chen LL, et al. Banana MaSPL16 modulates carotenoid biosynthesis during fruit ripening through activating the transcription of lycopene β-cyclase genes[J]. J Agric Food Chem, 2020, 68(5): 1286-1296. |
[30] | Han YJ, Wu M, Cao LY, et al. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans[J]. Plant Mol Biol, 2016, 91(4-5): 485-496. |
[31] | Fu CC, Han YC, Fan ZQ, et al. The Papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening[J]. J Agric Food Chem, 2016, 64(27): 5454-5463. |
[32] | Fu CC, Han YC, Kuang JF, et al. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening[J]. Plant Cell Physiol, 2017, 58(12): 2155-2165. |
[33] |
Moreno JC, Cerda A, Simpson K, et al. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase(Dclcyb1)expression[J]. J Exp Bot, 2016, 67(8): 2325-2338.
doi: 10.1093/jxb/erw037 pmid: 26893492 |
[1] | 郭纯, 宋桂梅, 闫艳, 邸鹏, 王英平. 西洋参bZIP基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2024, 40(4): 167-178. |
[2] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[3] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[4] | 谢倩, 江来, 贺进, 刘玲玲, 丁明月, 陈清西. 不同鲜食品质橄榄果实转录组测序及酚类代谢途径相关调控基因挖掘[J]. 生物技术通报, 2024, 40(3): 215-228. |
[5] | 何诗瑜, 曾仲大, 李博岩. 空间分辨代谢组学在疾病诊断研究中的应用进展[J]. 生物技术通报, 2024, 40(1): 145-159. |
[6] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[7] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[8] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[9] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[10] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[11] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[12] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[13] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[14] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[15] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||