生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 275-281.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0335
收稿日期:2024-04-09
出版日期:2024-12-26
发布日期:2025-01-15
通讯作者:
谢秋玲,女,博士,研究员,研究方向:基因工程与重组药物;E-mail: txql@jnu.edu.cn作者简介:庄棵,女,硕士研究生,研究方向:基因工程与重组药物;E-mail: 915031762@qq.com
基金资助:
ZHUANG Ke(
), LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling(
)
Received:2024-04-09
Published:2024-12-26
Online:2025-01-15
摘要:
【目的】 探究大肠杆菌(Escherichia coli)DH5α 外膜囊泡(outer membrane vesicles, OMVs)在细菌间传递抗生素抗性基因AmpR的能力。【方法】通过超速离心法提取外膜囊泡;然后通过透射电镜,纳米颗粒跟踪分析(NTA)以及Western blot检测和表征OMVs的形态、粒径和浓度。同时 PCR鉴定OMVs中的氨苄青霉素抗性基因AmpR。将OMVs与大肠杆菌DH5α共孵育培养,观察细菌在氨苄抗生素培养基上的生长情况,挑取单菌落进行菌落PCR鉴定AmpR的存在。【结果】所提取的囊泡的平均粒径约为125 nm,在OMVs粒径范围之内,OMVs标志蛋白OmpC阳性,显示所提取的囊泡为细菌外膜囊泡OMVs。同时PCR鉴定该OMVs中含有氨苄青霉素抗性基因AmpR。与OMVs共孵育培养后的大肠杆菌DH5α能在LB固体平板上生长,通过菌落PCR鉴定大肠杆菌中含有AmpR基因。【结论】具有抗性基因的大肠杆菌Escherichia coli DH5α可以通过外膜囊泡OMVs将AmpR传递给周围的大肠杆菌,实现耐药性转移。
庄棵, 梁至轩, 何英婷, 谢秋玲. 大肠杆菌DH5α通过外膜囊泡传递抗生素抗性基因AmpR[J]. 生物技术通报, 2024, 40(12): 275-281.
ZHUANG Ke, LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling. Transfer of Antibiotic-resistance Gene AmpR by Escherichia coli DH5α Through Outer Membrane Vesicles[J]. Biotechnology Bulletin, 2024, 40(12): 275-281.
图1 透视电子显微镜观察外膜囊泡OMVs结构 左:E. coli DH5α 的OMVs,右:转化了pET-22b的E. coli DH5α 的OMVs
Fig. 1 Structure of OMVs observed by transmission electron microscopy Left :OMVs of E. coli DH5α. Right :OMVs of E. coli DH5α transformed with pET-22b
图2 NTA 检测OMVs的粒径分布 A:E. coli DH5α 的OMVs;B:转化了pET-22b的E. coli DH5α 的OMVs
Fig. 2 Particle size distribution of OMVs detected by NTA A: OMVs of E. coli DH5α ; B: OMVs of E. coli DH5α transformed with pET-22b
图3 WB检测外膜囊泡OMVs的外膜蛋白OmpC 1 :E. coli DH5α 的OMVs;2:转化了pET-22b的E. coli DH5α 的OMVs
Fig. 3 Detection of outer membrane protein OmpC of OMVs by WB 1 : OMVs of E. coli DH5α; 2: OMVs of E. coli DH5α transformed with pET-22b
图4 OMVs中AmpR的PCR检测 1 -3:E. coli DH5α 的OMVs; 4-6:pET-22b载体-E. coli DH5α 的 OMVs; 7-9:无菌水;10-12:pET-22b载体;M:marker DL2000
Fig. 4 Detection of AmpR in OMVs by PCR 1 -3: OMVs of E. coli DH5α ; 4-6: OMVs of the pET-22b vector-E. coli DH5α; 7-9: sterile water;10-12: pET-22b vector; M: marker DL2000
图5 OMVs与无抗性E. coli DH5α 共孵育结果 A:空白组;B:10 μg OMVs(AmpR-)组:C:20 μg OMVs(AmpR-)组;D:10 μg OMVs-AmpR组;E:20 μg OMVs-AmpR组
Fig. 5 Co-incubation of OMVs with non-resistant E. coli DH5α A: Control group; B: 10 μg OMVs(AmpR-)group: C: 20 μg OMVs(AmpR-)group; D: 10 μg OMVs-AmpR group; E: 20 μg OMVs-AmpR group
图6 菌落PCR结果 1-3:空白组; 4-6: E. coli DH5α ;7-9:转化了pET-22b载体的E. coli DH5α;10-12:10 μg OMVs-AmpR组;13-15:20 μg OMVs-AmpR组;M:marker DL 2000
Fig. 6 Colony by PCR 1-3: Control group; 4-6: E. coli DH5α; 7-9: E. coli DH5α transformed with pET-22b vector; 10-12: 10 μg OMVs-AmpR group; 13-15: 20 μg OMVs-AmpR group; M: marker DL 2000
| [1] |
Lalak A, Wasyl D, Zajac M, et al. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals[J]. Veterinary Microbiology, 2016, 194: 69-73.
doi: S0378-1135(16)30023-2 pmid: 26869096 |
| [2] | Jian ZH, Zeng L, Xu TJ, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control[J]. J Basic Microbiol, 2021, 61(12): 1049-1070. |
| [3] |
Sharma VK, Johnson N, Cizmas L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150: 702-714.
doi: S0045-6535(15)30538-5 pmid: 26775188 |
| [4] | Tao S, Chen H, Li N, et al. The spread of antibiotic resistance genes in vivo model[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 3348695. |
| [5] | Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, et al. The antibiotic crisis: how bacterial predators can help[J]. Comput Struct Biotechnol J, 2020, 18: 2547-2555. |
| [6] | Hong J, Dauros-Singorenko P, Whitcombe A, et al. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions[J]. J Extracell Vesicles, 2019, 8(1): 1632099. |
| [7] |
Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles[J]. J Antimicrob Chemother, 2017, 72(8): 2201-2207.
doi: 10.1093/jac/dkx131 pmid: 28505330 |
| [8] | 潘琪琪, 王涓, 汪智, 等. 外膜囊泡的物质传递及细菌保护作用研究进展[J]. 微生物学报, 2024, 64(2): 364-377. |
| Pan QQ, Wang J, Wang Z, et al. Research progress in material delivery and bacterial protection of outer membrane vesicles[J]. Acta Microbiol Sin, 2024, 64(2): 364-377. | |
| [9] |
Sartorio MG, Pardue EJ, Feldman MF, et al. Bacterial outer membrane vesicles: from discovery to applications[J]. Annu Rev Microbiol, 2021, 75: 609-630.
doi: 10.1146/annurev-micro-052821-031444 pmid: 34351789 |
| [10] | Deng YQ, Xu HD, Su YL, et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis[J]. BMC Genomics, 2019, 20(1): 761. |
| [11] |
Domingues S, Nielsen KM. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Curr Opin Microbiol, 2017, 38: 16-21.
doi: S1369-5274(16)30193-X pmid: 28441577 |
| [12] |
Soler N, Marguet E, Verbavatz JM, et al. Virus-like vesicles and extracellular DNA produced by hyperthermophilic Archaea of the order Thermococcales[J]. Res Microbiol, 2008, 159(5): 390-399.
doi: 10.1016/j.resmic.2008.04.015 pmid: 18625304 |
| [13] |
Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2011, 55(7): 3084-3090.
doi: 10.1128/AAC.00929-10 pmid: 21518847 |
| [14] | Chen LJ, Jing XP, Meng DL, et al. Newly detected transmission of blaKPC-2 by outer membrane vesicles in Klebsiella pneumoniae[J]. Curr Med Sci, 2023, 43(1): 80-85. |
| [15] | Liu LN, Bilal M, Duan XG, et al. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives[J]. Sci Total Environ, 2019, 667: 444-454. |
| [16] | 刘悦, 李青超, 兰英, 等. 农业基因工程微生物及其安全性风险评价[J]. 黑龙江农业科学, 2023(7): 122-126, 136. |
| Liu Y, Li QC, Lan Y, et al. Agricultural genetically engineered microorganisms and their safety risk assessment[J]. Heilongjiang Agric Sci, 2023(7): 122-126, 136. | |
| [17] | Sanderson H, Fricker C, Brown RS, et al. Antibiotic resistance genes as an emerging environmental contaminant[J]. Environ Rev, 2016, 24(2): 205-218. |
| [18] |
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Gajendran R, et al. Horizontal transfer of antimicrobial resistance determinants among enteric pathogens through bacterial conjugation[J]. Curr Microbiol, 2019, 76(6): 666-672.
doi: 10.1007/s00284-019-01676-x pmid: 30941540 |
| [19] |
Bielaszewska M, Daniel O, Karch H, et al. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles[J]. J Antimicrob Chemother, 2020, 75(9): 2442-2451.
doi: 10.1093/jac/dkaa214 pmid: 32562546 |
| [20] | Chen GZ, Fan FF, Deng SQ, et al. Outer membrane vesicles from Escherichia coli are efficiently internalized by macrophage cells and alter their inflammatory response[J]. Microb Pathog, 2023, 175: 105965. |
| [21] | Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update[J]. J Control Release, 2020, 323: 253-268. |
| [22] |
Thoma J, Manioglu S, Kalbermatter D, et al. Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies[J]. Commun Biol, 2018, 1: 23.
doi: 10.1038/s42003-018-0027-5 pmid: 30271910 |
| [23] | Bittel M, Reichert P, Sarfati I, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo[J]. J Extracell Vesicles, 2021, 10(12): e12159. |
| [24] | Ren ZX, Zhao YY, Han S, et al. Regulatory strategies for inhibiting horizontal gene transfer of ARGs in paddy and dryland soil through computer-based methods[J]. Sci Total Environ, 2023, 856(Pt 1): 159096. |
| [25] | Jan AT. Outer membrane vesicles(OMVs)of gram-negative bacteria: a perspective update[J]. Front Microbiol, 2017, 8: 1053. |
| [26] |
Alizadeh N, Ahangarzadeh Rezaee M, Samadi Kafil H, et al. Evaluation of resistance mechanisms in carbapenem-resistant Enterobacteriaceae[J]. Infect Drug Resist, 2020, 13: 1377-1385.
doi: 10.2147/IDR.S244357 pmid: 32494169 |
| [27] |
Tashiro Y, Hasegawa Y, Shintani M, et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells[J]. Front Microbiol, 2017, 8: 571.
doi: 10.3389/fmicb.2017.00571 pmid: 28439261 |
| [28] |
Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids[J]. Plasmid, 2017, 91: 96-104.
doi: S0147-619X(16)30116-0 pmid: 28461122 |
| [29] | Smillie C, Garcillán-Barcia MP, Francia MV, et al. Mobility of plasmids[J]. Microbiol Mol Biol Rev, 2010, 74(3): 434-452. |
| [30] |
Jiang XL, Palazzotto E, Wybraniec E, et al. Automating cloning by natural transformation[J]. ACS Synth Biol, 2020, 9(12): 3228-3235.
doi: 10.1021/acssynbio.0c00240 pmid: 33231069 |
| [1] | 饶峻, 赵晨, 李端华, 廖豪, 黄加雨, 王辂. 自诱导策略在麦角硫因生物合成中的应用[J]. 生物技术通报, 2025, 41(1): 333-346. |
| [2] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
| [3] | 王周, 余杰, 王金华, 王永泽, 赵筱. 厌氧表达乳酸脱氢酶以提高大肠杆菌产D-乳酸光学纯度[J]. 生物技术通报, 2024, 40(5): 290-299. |
| [4] | 刘灿, 闫晓阳, 曾焱, 欧祥龙, 廖永洪. 增加革兰阴性菌外膜囊泡产量的研究进展[J]. 生物技术通报, 2024, 40(3): 100-108. |
| [5] | 朱恬仪, 孔桂美, 焦红梅, 郭停停, 乌日汗, 刘翠翠, 高成凤, 李国才. CRISPR/Cas9介导的adeG基因敲除大肠杆菌细菌模型的建立[J]. 生物技术通报, 2024, 40(2): 55-64. |
| [6] | 皮一飞, 宋新辉, 王淅琳, 李谨谨, 孙长斌, 徐炜. 基于R-loop靶向编辑技术的R-loop功能位点高通量筛选系统[J]. 生物技术通报, 2024, 40(10): 181-190. |
| [7] | 杨红艳, 韩筱, 杨建军. pDNA质粒在一次性生物反应器中的放大生产研究[J]. 生物技术通报, 2024, 40(1): 168-175. |
| [8] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
| [9] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
| [10] | 吴莉丹, 冉雪琴, 牛熙, 黄世会, 李升, 王嘉福. 猪源致病性大肠杆菌基因组比较与毒力因子分析[J]. 生物技术通报, 2023, 39(12): 287-299. |
| [11] | 侯炜辰, 叶柯, 李洁, 张洋子, 许文涛, 朱龙佼, 李相阳. 基于抗体-适配体夹心生物传感器检测大肠杆菌O157: H7[J]. 生物技术通报, 2023, 39(12): 81-89. |
| [12] | 李奕雅, 吴一凡, 丁能水, 范小萍, 陈凡. 荧光素酶辅助定量大肠杆菌破碎效果的方法[J]. 生物技术通报, 2023, 39(12): 90-98. |
| [13] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
| [14] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
| [15] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||