生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 265-276.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0364

• 研究报告 • 上一篇    

产Surfactin贝莱斯芽胞杆菌C5A-1的鉴定和所产Surfactin对植物的促生效果

吕镇1,2(), 甘恬1, 霍思羽1, 赵晨笛1, 赵梦瑶1, 李亚涛1, 马玉超1(), 耿玉清2()   

  1. 1.北京林业大学生物科学与技术学院,北京 100083
    2.北京林业大学林学院,北京 100083
  • 收稿日期:2025-04-06 出版日期:2025-09-26 发布日期:2025-09-24
  • 通讯作者: 马玉超,女,副教授,研究方向 :微生物代谢工程;E-mail: mayuchao@bifu.edu.cn
    耿玉清,女,教授,研究方向 :土壤生态;E-mail: gengyuqing@bjfu.edu.cn
  • 作者简介:吕镇,男,硕士研究生,研究方向 :土壤微生物;E-mail: Lz1915@bjfu.edu.cn
  • 基金资助:
    国家重点研发项目(2021YFD220120302);国家重点研发项目(2023YFD1501900);工业生物催化教育部重点实验室(清华大学)开放基金项目(2023001)

Identification of Surfactin-producing Bacillus Velezensis C5A-1 and Evaluation of the Plant Growth-promoting Effects of Its Surfactin

LYU Zhen1,2(), GAN Tian1, HUO Si-yu1, ZHAO Chen-di1, ZHAO Meng-yao1, LI Ya-tao1, MA Yu-chao1(), GENG Yu-qing2()   

  1. 1.College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083
    2.College of Forestry, Beijing Forestry University, Beijing 100083
  • Received:2025-04-06 Published:2025-09-26 Online:2025-09-24

摘要:

目的 筛选surfactin高产菌株,从基因组水平了解菌株的遗传背景和surfactin的生物合成过程,探索surfactin的植物促生功能。 方法 利用选择性分离技术从植物根际土中筛选surfactin产生菌;分别采用高效液相色谱和MALDI-TOF质谱对surfactin进行定量和结构类型分析;利用Illumina 结合 PacBio三代测序平台进行全基因组测序,利用生物信息学进行分类鉴定、功能基因注释、次级代谢基因簇和surfactin的生物合成过程分析;利用盆栽实验检测surfactin对植物幼苗的促生功能。 结果 从采集自山西大同杨树根际土壤中筛选到排油能力和抑菌能力强的菌株C5A-1,所产surfactin结构类型为C14-和C15-surfactin A,产量为1 208.16 mg/L。C5A-1与Bacillus velezensis FZB42的基因组平均核苷酸一致性(ANI)和数字DNA-DNA杂交值分别为98.35%和85.4%。C5A-1的基因组大小为3 929 585 bp,GC含量为46.5%,共编码3 747个基因,包含12个次级代谢产物基因簇。surfactin生物合成基因簇包含了核心基因srfAAsrfABsrfAC。C5A-1所产surfactin能够显著提高毛白杨、玉米和大豆的株高、茎粗、地上和地下部的干重。 结论 C5A-1为贝莱斯芽胞杆菌的一株新菌株,所产C14-和C15-surfactin A具有显著的植物促生功能,为代谢工程法改善surfactin产量提供了优良底盘细胞工厂,为surfactin在农林业的实际应用提供了理论基础。

关键词: 贝莱斯芽胞杆菌, surfactin, MALDI-TOF MS, 全基因组测序, 次级代谢产物基因簇

Abstract:

Objective This research is aimed to screen the high surfactin-producing strains, understand the genetic background and surfactin biosynthesis of the strains from the whole genome, and explore the functions of surfactin produced by the strains in plant growth-promoting. Method Surfactin-producing strains were isolated from plant rhizosphere soil by selective separation technique. The quantification and structural characterization of surfactin were performed using high-performance liquid chromatography and MALDI-TOF MS, respectively. The whole-genome was sequenced using Illumina + PacBio third-generation sequencing platform; and species identification, functional gene annotation, secondary metabolic gene clusters and surfactin biosynthesis were analyzed by bioinformatics method. Pot experiments were performed to detect the plant growth-promoting effect by surfactin. Result Strain C5A-1 with strong oil-displacing and antifungal activity was screened from poplar rhizosphere soil collected from Datong, Shanxi province. Surfactin homologues from C5A-1 were identified as C14- and C15-surfactin A, with the yield of 1 208.16 mg/L. The genomic average nucleotide identity (ANI) and digital DNA-DNA hybridization values between C5A-1 and B. velezensis FZB42 were 98.35% and 85.4%, respectively. C5A-1 genome size was 3 929 585 bp with 46.5% guanine-cytosine content, encoding 3 747 genes and harboring 12 secondary metabolite biosynthetic gene clusters. The surfactin biosynthetic gene cluster includes the core genes srfAA, srfAB, and srfAC. Surfactin produced by C5A-1 significantly enhanced the plant height, stem diameter, and aboveground and underground dry biomass of Populus tomentosa, Zea mays and Glycine max. Conclusion C5A-1 with high-producing surfactin was a novel strain belonging to B. velezensis, and the C14- and C15-surfactin A isoforms produced by C5A-1 demonstrated significant plant growth-promoting activity, which provides an optimized chassis cell factory for improving the surfactin yield by metabolic engineering strategies, and established a theoretical foundation for the practical application of surfactin in agricultural and forestry systems.

Key words: Bacillus velezensis, surfactin, MALDI-TOF MS, whole-genome sequencing, secondary metabolite biosynthetic gene clusters