生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 87-97.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0550

• 作物高光效专题 • 上一篇    下一篇

叶绿体中过表达乙醇酸氧化酶对水稻光合作用与生长的影响

李波娣(), 李志超, 朱国辉, 彭新湘, 张智胜()   

  1. 华南农业大学生命科学学院,广州 510642
  • 收稿日期:2025-05-30 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 张智胜,男,博士,副研究员,研究方向 :作物高光效与光呼吸调控机制;E-mail: zzsheng@scau.edu.cn
  • 作者简介:李波娣,女,博士,研究方向 :植物高光效机理及分子改良;E-mail: 1398327568@qq.com
  • 基金资助:
    广东省自然科学基金项目(2025A1515012660)

Expression of Glycolate Oxidase in Rice Chloroplasts and Its Effects on Photosynthesis and Growth

LI Bo-di(), LI Zhi-chao, ZHU Guo-hui, PENG Xin-xiang, ZHANG Zhi-sheng()   

  1. College of Life Science, South China Agricultural University, Guangzhou 510642
  • Received:2025-05-30 Published:2025-10-26 Online:2025-10-28

摘要:

目的 验证植物叶绿体具有代谢乙醛酸生成CO2的能力。 方法 克隆了水稻的乙醇酸氧化酶1(OsGLO1)、乙醇酸氧化酶3(OsGLO3)与过氧化氢酶C(OsCATC)以及来源于大肠杆菌的过氧化氢酶(EcKAT)基因,并在其前端融合了叶绿体定位信号编码序列RC2;后续以不同的组合方式将GLOCAT/KAT进行组合以构建不同多基因表达载体,并将其在水稻叶绿体中定向表达,从而催化叶绿体中的乙醇酸生成乙醛酸。 结果 转录水平、蛋白水平和酶活水平检测结果都表明上述目的基因可在水稻叶绿体中高效表达并行使正常的催化功能;但是获得的转基因水稻植株均呈现植株生长缓慢,分蘖数减少,光合速率下降等表型。 结论 仅在水稻叶绿体中将乙醇酸转化为乙醛酸不能提高水稻的光合固碳效率,水稻叶绿体可能没有催化乙醛酸生成CO2进入光合碳同化代谢的能力。

关键词: 乙醇酸氧化酶, 过氧化氢酶, 乙醛酸, 叶绿体, 光合作用, CO2, 水稻, 光呼吸

Abstract:

Objective Validate the hypothesis that plant chloroplasts possess the ability to metabolize glyoxylate into CO₂. Method In this study, the rice glycolate oxidase 1 (OsGLO1), glycolate oxidase 3 (OsGLO3) and catalase C (OsCATC) genes and the catalase (EcKAT) gene from Escherichia coli were cloned, and the chloroplast localization signal coding sequence RC2 was fused to their front ends; subsequently, GLO and CAT/KAT were combined in different combinations to construct different multi-gene expression vectors, which were directed its expression in rice chloroplasts, thereby catalyzing the production of glyoxylic acid from glycolic acid in chloroplasts. Result Results from transcript-level, protein-level, and enzyme activity analyses confirmed the high-efficiency expressions of target genes in rice and having normal catalytic function. However, all transgenic rice plants had phenotypes such as dwarfism, reduced tiller number, and decreased photosynthesis. Conclusion These findings indicate that only converting glycolate into glyoxylate in chloroplasts fails to enhance photosynthetic carbon fixation efficiency in rice, suggesting that rice chloroplasts may lack the capacity to catalyze glyoxylate into CO₂.

Key words: glycolate oxidase, catalase, glyoxylate, chloroplasts, photosynthesis, CO2, rice, photorespiration