生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 98-109.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0379
张雨轩1(
), 张诗怡1, 陈会芳1, 蔡坤秀2, 李晨烨1, 杨俊杰2, 郑涛2, 仇明月1, 杨有思媛1, 陈莹1(
)
收稿日期:2025-04-12
出版日期:2025-10-26
发布日期:2025-10-28
通讯作者:
陈莹,女,博士,副教授,研究方向 :观赏药用植物资源开发利用;E-mail: 000q020057@fafu.edu.cn作者简介:张雨轩,女,硕士研究生,研究方向 :植物资源开发利用;E-mail: 13506987207@163.com基金资助:
ZHANG Yu-xuan1(
), ZHANG Shi-yi1, CHEN Hui-fang1, CAI Kun-xiu2, LI Chen-ye1, YANG Jun-jie2, ZHENG Tao2, QIU Ming-yue1, YANG You-si-yuan1, CHEN Ying1(
)
Received:2025-04-12
Published:2025-10-26
Online:2025-10-28
摘要:
目的 探究不同光质对血叶兰叶片类胡萝卜素类化合物积累的影响及其分子机制,为血叶兰规范化栽培提供理论参考。 方法 以血叶兰‘闽热圆帅’的叶片为实验材料,分析其在白光(W)、蓝光(B)、黄光(Y)处理下的代谢与转录调控机制。利用液相色谱‒质谱联用技术(LC-MS/MS)和高通量转录组测序(RNA-seq)技术,分别获取代谢组和转录组数据。以白光组为对照,分析蓝光和黄光对类胡萝卜素含量、相关代谢物及基因表达的影响。通过RT-qPCR验证8个类胡萝卜素合成关键基因的表达模式。 结果 蓝光处理显著提升血叶兰叶片中总类胡萝卜素含量,而黄光处理未引起显著变化。代谢组学分析鉴定出23个与类胡萝卜素合成相关的差异代谢物,包括黄原酸、脱落酸醇、独脚金内酯ABC-环和链孢霉黄素等。转录组学分析发现9个差异表达的代谢酶基因(如CrtZ、Z-ISO、PSY等)及6个关键转录因子(ERF002、ERF059、ERF066等),这些转录因子可能通过响应赤霉素、茉莉酸甲酯、生长素、水杨酸和脱落酸信号调控类胡萝卜素合成。RT-qPCR验证证实8个关键基因在类胡萝卜素代谢调控中发挥潜在作用。 结论 蓝光处理下,血叶兰叶片中ERF和bZIP家族转录因子通过与赤霉素、茉莉酸甲酯、生长素、水杨酸和脱落酸相关的顺式作用元件结合,调控下游酶基因的表达,从而促进类胡萝卜素相关代谢物的显著积累。
张雨轩, 张诗怡, 陈会芳, 蔡坤秀, 李晨烨, 杨俊杰, 郑涛, 仇明月, 杨有思媛, 陈莹. 多组学分析不同光质下血叶兰类胡萝卜素的差异积累[J]. 生物技术通报, 2025, 41(10): 98-109.
ZHANG Yu-xuan, ZHANG Shi-yi, CHEN Hui-fang, CAI Kun-xiu, LI Chen-ye, YANG Jun-jie, ZHENG Tao, QIU Ming-yue, YANG You-si-yuan, CHEN Ying. Differential Accumulation of Carotenoids in Ludisia discolor under Different Light Qualities Based on Multiomics[J]. Biotechnology Bulletin, 2025, 41(10): 98-109.
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| CAC | Reference gene | TCCGACAAATTGGAGGTTGC | TGCTGCTGACAACAATCACG |
| PSY-1 | TRINITY_DN3430_c0_g1 | CGAAGATGCCACAGGGAAGT | TTCTGTCAGCTGCTGTGAGG |
| NCED | TRINITY_DN3795_c2_g1 | ATCCATTGGAAGGGTTGCCC | ACAGGCCTGTTTTAGAGGACC |
| ZEP | TRINITY_DN761_c0_g1 | AGGCAAAGCTTGAAATGCGG | AAGCTGCGGCACTGTATCTT |
| CrtZ | TRINITY_DN11602_c0_g1 | CTGGCAATCCGGATCCAACT | TCCGACGTCAACGATCGTTT |
| Z-ISO | TRINITY_DN19139_c0_g1 | TTGGGGCTAGAAGTTTGGGG | GCATGGTGCGAACTATAAGGAC |
| CYP707A-1 | TRINITY_DN5732_c0_g1 | TCTCCATGATCCGACTGCAC | GACCGAAAGTCGAGAGTCTCA |
| LUT1 | TRINITY_DN5391_c0_g1 | TCAATCTCCCCTGACCGTCT | CTTGAACCAGACAGCCCCTT |
| VDE | TRINITY_DN10121_c0_g1 | AGCAAACGCAAACTCCCCTA | ACTAACCTGCATGCCCCAAA |
表1 RT-qPCR引物
Table 1 Primers for RT-qPCR
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| CAC | Reference gene | TCCGACAAATTGGAGGTTGC | TGCTGCTGACAACAATCACG |
| PSY-1 | TRINITY_DN3430_c0_g1 | CGAAGATGCCACAGGGAAGT | TTCTGTCAGCTGCTGTGAGG |
| NCED | TRINITY_DN3795_c2_g1 | ATCCATTGGAAGGGTTGCCC | ACAGGCCTGTTTTAGAGGACC |
| ZEP | TRINITY_DN761_c0_g1 | AGGCAAAGCTTGAAATGCGG | AAGCTGCGGCACTGTATCTT |
| CrtZ | TRINITY_DN11602_c0_g1 | CTGGCAATCCGGATCCAACT | TCCGACGTCAACGATCGTTT |
| Z-ISO | TRINITY_DN19139_c0_g1 | TTGGGGCTAGAAGTTTGGGG | GCATGGTGCGAACTATAAGGAC |
| CYP707A-1 | TRINITY_DN5732_c0_g1 | TCTCCATGATCCGACTGCAC | GACCGAAAGTCGAGAGTCTCA |
| LUT1 | TRINITY_DN5391_c0_g1 | TCAATCTCCCCTGACCGTCT | CTTGAACCAGACAGCCCCTT |
| VDE | TRINITY_DN10121_c0_g1 | AGCAAACGCAAACTCCCCTA | ACTAACCTGCATGCCCCAAA |
图1 不同光质下血叶兰总类胡萝卜素含量W:白光;B:蓝光;Y:黄光。不同字母表示在0.05 水平上差异性显著(P<0.05)。下同
Fig. 1 Total carotenoid content in Ludisia discolor under different light qualitiesW: White light. B: Blue light. Y: Yellow light. Different letters indicate significant differences at the 0.05 level (P<0.05). The same below
| 序号No. | 名称 Name | 分子式 Formula | KEGG注释 KEGG_annotation |
|---|---|---|---|
| 1 | 黄原酸 Xanthoxic acid | C15H22O4 | C13454 |
| 2 | 反式法呢基二磷酸酯 Trans,trans-Farnesyl diphosphate | C15H28O7P2 | C00448 |
| 3 | 脱落酸醇 Abscisic alcohol | C15H22O3 | C13456 |
| 4 | 独脚金内酯ABC-环 Strigolactone ABC-rings | C14H18O3 | C18036 |
| 5 | 黄酮糖苷 Rhodopinal glucoside | C46H66O7 | C16271 |
| 6 | 螺旋黄质 Spheroidenone | C41H58O2 | C15903 |
| 7 | 3',4'-二氢紫菌红醇 3',4'-Dihydrorhodovibrin | C41H62O2 | C15887 |
| 8 | 前八氢番茄红素二磷酸酯 Prephytoene diphosphate | C40H68O7P2 | C03427 |
| 9 | 羟基螺环菌素 Hydroxyspirilloxanthin | C41H58O2 | C15879 |
| 10 | 链孢霉黄素 Neurosporaxanthin | C35H46O2 | C08607 |
| 11 | 氯黄质 Chloroxanthin | C40H60O | C15892 |
| 12 | 黄质醛 Xanthoxin | C15H22O3 | C13453 |
| 13 | 脱落酸葡萄糖酯 Abscisic acid glucose ester | C21H30O9 | C15970 |
| 14 | 脱落酸 Abscisate | C15H20O4 | C06082 |
| 15 | 独角金醇 Strigol | C19H22O6 | C09190 |
| 16 | 8'-羟基脱落物 8'-Hydroxyabscisate | C15H20O5 | C15514 |
| 17 | 螺旋黄质 Spirilloxanthin | C42H60O2 | C15881 |
| 18 | 玉米黄质二葡萄糖苷 Zeaxanthin diglucoside | C52H76O12 | C15969 |
| 19 | (2'S)-脱氧麦芽醇2'-(2,4-二-O-甲基-α-L-葡萄糖苷) (2'S)-Deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | C48H70O6 | C15935 |
| 20 | 脱落醛 Abscisic aldehyde | C15H20O3 | C13455 |
| 21 | 叶黄素 Lutein | C40H56O2 | C08601 |
| 22 | 二氢相酸 Dihydrophaseic acid | C15H22O5 | C15971 |
| 23 | 视紫红醛 Rhodopinal | C40H56O2 | C16270 |
表2 不同光质下血叶兰类胡萝卜素相关差异代谢物
Table 2 Carotenoid-related differential metabolites in L. discolor under different light qualities
| 序号No. | 名称 Name | 分子式 Formula | KEGG注释 KEGG_annotation |
|---|---|---|---|
| 1 | 黄原酸 Xanthoxic acid | C15H22O4 | C13454 |
| 2 | 反式法呢基二磷酸酯 Trans,trans-Farnesyl diphosphate | C15H28O7P2 | C00448 |
| 3 | 脱落酸醇 Abscisic alcohol | C15H22O3 | C13456 |
| 4 | 独脚金内酯ABC-环 Strigolactone ABC-rings | C14H18O3 | C18036 |
| 5 | 黄酮糖苷 Rhodopinal glucoside | C46H66O7 | C16271 |
| 6 | 螺旋黄质 Spheroidenone | C41H58O2 | C15903 |
| 7 | 3',4'-二氢紫菌红醇 3',4'-Dihydrorhodovibrin | C41H62O2 | C15887 |
| 8 | 前八氢番茄红素二磷酸酯 Prephytoene diphosphate | C40H68O7P2 | C03427 |
| 9 | 羟基螺环菌素 Hydroxyspirilloxanthin | C41H58O2 | C15879 |
| 10 | 链孢霉黄素 Neurosporaxanthin | C35H46O2 | C08607 |
| 11 | 氯黄质 Chloroxanthin | C40H60O | C15892 |
| 12 | 黄质醛 Xanthoxin | C15H22O3 | C13453 |
| 13 | 脱落酸葡萄糖酯 Abscisic acid glucose ester | C21H30O9 | C15970 |
| 14 | 脱落酸 Abscisate | C15H20O4 | C06082 |
| 15 | 独角金醇 Strigol | C19H22O6 | C09190 |
| 16 | 8'-羟基脱落物 8'-Hydroxyabscisate | C15H20O5 | C15514 |
| 17 | 螺旋黄质 Spirilloxanthin | C42H60O2 | C15881 |
| 18 | 玉米黄质二葡萄糖苷 Zeaxanthin diglucoside | C52H76O12 | C15969 |
| 19 | (2'S)-脱氧麦芽醇2'-(2,4-二-O-甲基-α-L-葡萄糖苷) (2'S)-Deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | C48H70O6 | C15935 |
| 20 | 脱落醛 Abscisic aldehyde | C15H20O3 | C13455 |
| 21 | 叶黄素 Lutein | C40H56O2 | C08601 |
| 22 | 二氢相酸 Dihydrophaseic acid | C15H22O5 | C15971 |
| 23 | 视紫红醛 Rhodopinal | C40H56O2 | C16270 |
图3 不同光质下血叶兰相关差异代谢物热图深绿代表高表达量,浅绿代表低表达量,颜色条图例代表差异倍数,下同
Fig. 3 Heat map of relevant differential metabolites in L. discolor under different light qualitiesDark green indicates high expression, light green indicates low expression, color bar legend indicates the multiple of differences. The same below
| 基因名称 Gene name | 基因ID Gene ID | 酶编号 Corresponding enzyme | KO号 Enzyme KO |
|---|---|---|---|
| CrtZ | TRINITY_DN11602_c0_g1 | [EC:1.14.15.24] | K15746 |
| Z-ISO | TRINITY_DN19139_c0_g1 | [EC:5.2.1.12] | K15744 |
| PSY-1 | TRINITY_DN3430_c0_g1 | [EC:2.5.1.32] | K02291 |
| PSY-2 | TRINITY_DN3430_c0_g2 | [EC:2.5.1.32] | K02291 |
| CYP707A-1 | TRINITY_DN5732_c0_g1 | [EC:1.14.14.137] | K09843 |
| CYP707A-2 | TRINITY_DN10055_c0_g1 | [EC:1.14.14.137] | K09843 |
| LUT1 | TRINITY_DN5391_c0_g1 | [EC:1.14.14.158] | K09837 |
| VDE | TRINITY_DN10121_c0_g1 | [EC:1.23.5.1] | K09839 |
| NCED | TRINITY_DN3795_c2_g1 | [EC:1.13.11.51] | K09840 |
| ZDS | TRINITY_DN25937_c0_g1 | [EC:1.3.5.6] | K00514 |
| ZEP | TRINITY_DN761_c0_g1 | [EC:1.14.15.21] | K09838 |
表3 不同光质下血叶兰类胡萝卜素相关差异表达基因
Table 3 Carotenoid-related differentially expressed genes in L. discolor under different light qualities
| 基因名称 Gene name | 基因ID Gene ID | 酶编号 Corresponding enzyme | KO号 Enzyme KO |
|---|---|---|---|
| CrtZ | TRINITY_DN11602_c0_g1 | [EC:1.14.15.24] | K15746 |
| Z-ISO | TRINITY_DN19139_c0_g1 | [EC:5.2.1.12] | K15744 |
| PSY-1 | TRINITY_DN3430_c0_g1 | [EC:2.5.1.32] | K02291 |
| PSY-2 | TRINITY_DN3430_c0_g2 | [EC:2.5.1.32] | K02291 |
| CYP707A-1 | TRINITY_DN5732_c0_g1 | [EC:1.14.14.137] | K09843 |
| CYP707A-2 | TRINITY_DN10055_c0_g1 | [EC:1.14.14.137] | K09843 |
| LUT1 | TRINITY_DN5391_c0_g1 | [EC:1.14.14.158] | K09837 |
| VDE | TRINITY_DN10121_c0_g1 | [EC:1.23.5.1] | K09839 |
| NCED | TRINITY_DN3795_c2_g1 | [EC:1.13.11.51] | K09840 |
| ZDS | TRINITY_DN25937_c0_g1 | [EC:1.3.5.6] | K00514 |
| ZEP | TRINITY_DN761_c0_g1 | [EC:1.14.15.21] | K09838 |
图4 不同光质下血叶兰相关差异表达基因热图深蓝代表高表达量,浅蓝代表低表达量
Fig. 4 Heat map of differentially expressed genes in L. discolor under different light qualitiesDark blue indicates high expression, and light blue indicates low expression
图6 血叶兰类胡萝卜素类相关转录因子与酶基因调控关系红色实线表示正相关,蓝色虚线表示负相关,线的颜色越深相关性越强
Fig. 6 Regulatory relationships between carotenoid-related transcription factors and enzyme genes in L. discolorRed solid line indicates positive correlation, blue dashed line indicates negative correlation, and the darker the color of the line, the stronger the correlation
图9 血叶兰在蓝光下类胡萝卜素代谢调控关系模型红色箭头代表基因表达量相对上升,蓝色箭头代表基因表达量相对下降
Fig. 9 Model of carotenoid metabolism regulation relationship in L. discolor under blue lightRed arrows indicate a relative increase in gene expression, blue arrows indicate a relative decrease in gene expression
| [1] | 林振兴. 观赏南药资源血叶兰的研究进展 [J]. 福建热作科技, 2012, 37(2): 4-5. |
| Lin ZX. Research progress on ornamental medicinal resources of Ophiopogon japonicus [J]. Fujian Sci Technol Trop Crops, 2012, 37(2): 4-5. | |
| [2] | 陈育青, 陈荣珠, 邹毅辉, 等. 闽草药公石松转录组分析及黄酮类合成功能基因的挖掘 [J]. 分子植物育种, 2022, 20(14): 4654-4664. |
| Chen YQ, Chen RZ, Zou YH, et al. Transcriptome analysis and mining of functional genes ivolved in flavonoid biosynthesis in Fujian folk-herb gongshisong [J]. Mol Plant Breed, 2022, 20(14): 4654-4664. | |
| [3] | 王昊, 尹莲, 刘洁霞, 等. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色 [J]. 中国农业科学, 2021, 54(15): 3279-3294. |
| Wang H, Yin L, Liu JX, et al. The carotenoid cleavage dioxygenases gene AgCCD4 regulates the pigmentation of celery tissues with different colors [J]. Sci Agric Sin, 2021, 54(15): 3279-3294. | |
| [4] | Maoka T. Carotenoids as natural functional pigments [J]. J Nat Med, 2020, 74(1): 1-16. |
| [5] | 于良晓, 郭远, 翟晓娜, 等. 叶黄素生物活性和环境因素对其稳定性影响研究进展 [J]. 保鲜与加工, 2023, 23(10): 62-70. |
| Yu LX, Guo Y, Zhai XN, et al. Research progress on the bioactivity of lutein and the influence of environmental factors on its stability [J]. Storage Process, 2023, 23(10): 62-70. | |
| [6] | 梁婉凤, 曾菁菁, 胡若群, 等. 转录组与代谢组分析不同生长时期金线莲类胡萝卜素的积累 [J]. 生物技术通报, 2024, 40(10): 262-274. |
| Liang WF, Zeng JJ, Hu RQ, et al. Transcriptional and metabolomic analysis of carotenoid accumulation in Anoectochilus roxburghii during different growth periods [J]. Biotechnol Bull, 2024, 40(10): 262-274. | |
| [7] | 胡若群, 曾菁菁, 梁婉凤, 等. 转录组和代谢组联合分析探究不同遮光条件下金线莲类胡萝卜素合成代谢机制 [J]. 生物技术通报, 2025, 41(5): 231-243. |
| Hu RQ, Zeng JJ, Liang WF, et al. Integrated transcriptome and metabolome analysis to explore the carotenoid synthesis and metabolism mechanism in Anoectochilus roxburghii under different shading conditions [J]. Biotechnol Bull, 2025, 41(5): 231-243. | |
| [8] | 唐丽. LED光质在植物组织培养和芽苗菜栽培中的调控作用及机理 [D]. 南京: 南京农业大学, 2013. |
| Tang L. Regulation and mechanism of LED light quality in plant tissue culture and sprout vegetable cultivation [D]. Nanjing: Nanjing Agricultural University, 2013. | |
| [9] | Frede K, Winkelmann S, Busse L, et al. The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica [J]. BMC Plant Biol, 2023, 23(1): 328. |
| [10] | 李元翔. 杜氏盐藻类胡萝卜素代谢对光强和光质变化的响应机制 [D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019. |
| Li YX. The response mechanism of carotenoid biosynthesis pathway under different intensities and wavelengths of light in Dunaliella salina [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2019. | |
| [11] | 董雪田. 三孢布拉霉中光照对类胡萝卜素生物合成的影响及其部分调控元件的初步挖掘 [D]. 无锡: 江南大学, 2022 |
| Dong XT. Effect of light on carotenoid biosynthesis in Blakeslea trispora and preliminary excavation of some regulatory elements [D]. Wuxi: Jiangnan University, 2022 | |
| [12] | Conceição D, Lopes RG, Derner RB, et al. The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum [J]. J Appl Phycol, 2020, 32(2): 1017-1025. |
| [13] | 池铭, 孙丽娟, 郝浩然, 等. 不同光照条件对卷枝毛霉生长发育及类胡萝卜素合成的影响 [J]. 江西农业学报, 2023, 35(5): 97-102, 121. |
| Chi M, Sun LJ, Hao HR, et al. Effects of different light conditions on growth, development and carotenoid synthesis of Mucor circinelloides [J]. Acta Agric Jiangxi, 2023, 35(5): 97-102, 121. | |
| [14] | Pola W, Sugaya S, Photchanachai S. Color development and phytochemical changes in mature green chili (Capsicum annuum L.) exposed to red and blue light-emitting diodes [J]. J Agric Food Chem, 2020, 68(1): 59-66. |
| [15] | Brazaitytė A, Sakalauskienė S, Samuolienė G, et al. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens [J]. Food Chem, 2015, 173: 600-606. |
| [16] | Zhang T, Chi JY, Zhang Y, et al. Effects of light quality on physiological characteristics of tomato seedlings [C]//2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). Shenzhen, China: IEEE, 2018: 1-4. |
| [17] | 吴迪, 张燕燕, 林楠, 等. 基于代谢组学和转录组学探究草珊瑚叶和根中黄酮类成分差异积累的转录调控机制 [J]. 中国中药杂志, 2023, 48(21): 5767-5778. |
| Wu D, Zhang YY, Lin N, et al. Transcriptional regulation mechanism of differential accumulation of flavonoids in leaves and roots of Sarcandra glabra based on metabonomics and transcriptomics [J]. China J Chin Mater Med, 2023, 48(21): 5767-5778. | |
| [18] | Zhang JY, Li SG, An HS, et al. Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities [J]. Front Plant Sci, 2022, 13: 1073332. |
| [19] | Zhan WM, Guo GH, Cui LH, et al. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids [J]. BMC Plant Biol, 2023, 23(1): 41. |
| [20] | Tadda SA, Li CY, Ding JT, et al. Integrated metabolome and transcriptome analyses provide insight into the effect of red and blue LEDs on the quality of sweet potato leaves [J]. Front Plant Sci, 2023, 14: 1181680. |
| [21] | Zhang PA, Lu SW, Liu ZJ, et al. Transcriptomic and metabolomic profiling reveals the effect of LED light quality on fruit ripening and anthocyanin accumulation in cabernet sauvignon grape [J]. Front Nutr, 2021, 8: 790697. |
| [22] | 沈颖, 陈惠琴, 吴妃, 等. 血叶兰化学成分及其生物活性研究 [J]. 广西植物, 2024, 44(12): 2279-2290. |
| Shen Y, Chen HQ, Wu F, et al. Chemical constituents and their biological activities of Ludisia discolor [J]. Guihaia, 2024, 44(12): 2279-2290. | |
| [23] | 饶秋容, 张芬, 何伟强. 血叶兰的组织培养和快速繁殖 [J]. 植物生理学通讯, 2003, 39(1): 36. |
| Rao QR, Zhang F, He WQ. Tissue culture and rapid propagation of Ludisia discolor [J]. Plant Physiol Commun, 2003, 39(1): 36. | |
| [24] | 杨泽秀, 陈英转, 吴文碟, 等. 血叶兰组培苗与内生真菌共生培养的生长效应研究 [J]. 热带林业, 2023, 51(2): 24-28. |
| Yang ZX, Chen YZ, Wu WD, et al. Symbiotic culture growth effect of Ludisia discolor seedlings and endophytic fungi [J]. Trop For, 2023, 51(2): 24-28. | |
| [25] | 陈蔚琪, 李丽容, 林晶, 等. 漳州市种植血叶兰的气候适应性分析 [J]. 福建热作科技, 2022, 47(4): 5-8. |
| Chen WQ, Li LR, Lin J, et al. Analysis about the climate suitability of planting Ludisia discolor in Zhangzhou [J]. Fujian Sci Technol Trop Crops, 2022, 47(4): 5-8. | |
| [26] | 高俊凤. 植物生理学实验指导 [M]. 北京: 高等教育出版社, 2006: 76-224. |
| Gao JF. Experimental guidance for plant physiology [M]. Beijing: Higher Education Press, 2006. | |
| [27] | Zhao H, Wu D, Kong FY, et al. The Arabidopsis thaliana nuclear factor Y transcription factors [J]. Front Plant Sci, 2017, 7: 2045. |
| [28] | 刘正霞, 徐阳, 徐进梅, 等. 不同引物及数据分析方法对定量PCR结果的影响 [J]. 南京医科大学学报: 自然科学版, 2009, 29(8): 1112-1117. |
| Liu ZX, Xu Y, Xu JM, et al. The Effects of different primers and data analysis methods on real-time PCR [J]. Acta Univ Med Nanjing Nat Sci, 2009, 29(8): 1112-1117. | |
| [29] | 黄枝, 王美娟, 林碧英. LED光质对豌豆芽苗菜产量及品质的影响 [J]. 亚热带农业研究, 2015, 11(2): 90-94. |
| Huang Z, Wang MJ, Lin BY. Effects of LED light quality on the yield and quality of Pisum sativum sprouts [J]. Subtrop Agric Res, 2015, 11(2): 90-94. | |
| [30] | Iwata-Reuyl D, Math SK, Desai SB, et al. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase [J]. Biochemistry, 2003, 42(11): 3359-3365. |
| [31] | 张印, 胡路艳, 王淑明, 等. ABA调控果实成熟研究进展 [J]. 园艺学报, 2023, 50(9): 1889-1898. |
| Zhang Y, Hu LY, Wang SM, et al. Research advances in ABA-mediated fruit ripening [J]. Acta Hortic Sin, 2023, 50(9): 1889-1898. | |
| [32] | 农倩, 谢金兰, 林丽, 等. 干旱胁迫下外源ABA对甘蔗幼苗生理特性和基因表达的影响 [J]. 热带作物学报, 2023, 44(3): 553-561. |
| Nong Q, Xie JL, Lin L, et al. Effects of exogenous ABA on physiological characteristics and gene expression in sugarcane seedlings under drought stress [J]. Chin J Trop Crops, 2023, 44(3): 553-561. | |
| [33] | Miller AP, Hornero-Méndez D, Bandara S, et al. Bioavailability and provitamin A activity of neurosporaxanthin in mice [J]. Commun Biol, 2023, 6(1): 1068. |
| [34] | 雷建军, 朱张生, 陈长明, 等. 辣椒分子育种研究进展 [J]. 西南大学学报: 自然科学版, 2023, 45(7): 1-20, 247. |
| Lei JJ, Zhu ZS, Chen CM, et al. Progress on molecular breeding of pepper [J]. J Southwest Univ Nat Sci Ed, 2023, 45(7): 1-20, 247. | |
| [35] | 宋松泉, 唐翠芳, 雷华平, 等. ABA调控种子发育的研究进展 [J]. 广西植物, 2023, 43(9): 1553-1567. |
| Song SQ, Tang CF, Lei HP, et al. Research progress on seed development regulated by ABA [J]. Guihaia, 2023, 43(9): 1553-1567. | |
| [36] | Magdaong NM, LaFountain AM, Greco JA, et al. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions [J]. J Phys Chem B, 2014, 118(38): 11172-11189. |
| [37] | 李君霞, 马小倩, 代书桃, 等. 谷子品质性状研究进展 [J]. 河南农业科学, 2023, 52(9): 14-23. |
| Li JX, Ma XQ, Dai ST, et al. Research progress on quality traits of foxtail millet [J]. J Henan Agric Sci, 2023, 52(9): 14-23. | |
| [38] | 龙海成, 马燕勤, 周玉洁, 等. 利用CRISPR/Cas9技术创制黄果番茄新种质 [J]. 农业生物技术学报, 2024, 32(7): 1693-1702. |
| Long HC, Ma YQ, Zhou YJ, et al. Creating new germplasm of yellow fruit tomato (Solanum lycopersicum) using CRISPR/Cas9 technology [J]. J Agric Biotechnol, 2024, 32(7): 1693-1702. | |
| [39] | 张丽, 陈丰酆, 王红霞, 等. 甘薯类胡萝卜素的代谢调控研究进展 [J]. 农业生物技术学报, 2023, 31(8): 1719-1729. |
| Zhang L, Chen FF, Wang HX, et al. Research progress on metabolic regulation of carotenoids in sweetpotato (Ipomoea batatas) [J]. J Agric Biotechnol, 2023, 31(8): 1719-1729. | |
| [40] | Tuan PA, Kim JK, Park NI, et al. Carotenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charantia) [J]. Food Chem, 2011, 126(4): 1686-1692. |
| [41] | 董书琦, 陈达, 秦巧平, 等. 高等植物叶绿素和类胡萝卜素代谢研究进展 [J]. 植物生理学报, 2023, 59(5): 793-802. |
| Dong SQ, Chen D, Qin QP, et al. Advances in metabolism of chlorophylls and carotenoids in higher plants [J]. Plant Physiol J, 2023, 59(5): 793-802. | |
| [42] | 吴健婷. 紫黄质脱环氧化酶VDE介导油菜抗黑腐病的功能研究 [D]. 合肥: 安徽农业大学, 2023. |
| Wu JT. Study on the function of violet lutein decyclic oxidase VDE mediating rape resistance to black rot [D]. Hefei: Anhui Agricultural University, 2023. | |
| [43] | Song HY, Liu JH, Chen CQ, et al. Down-regulation of NCED leads to the accumulation of carotenoids in the flesh of F1 generation of peach hybrid [J]. Front Plant Sci, 2022, 13: 1055779. |
| [44] | 张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用 [J]. 生物技术通报, 2021, 37(10): 203-215. |
| Zhang T, Li ZQ, Wu GQ. Role of WRKY transcription factor in plant response to stresses [J]. Biotechnol Bull, 2021, 37(10): 203-215. | |
| [45] | 吴迪, 张燕燕, 林楠, 等. 基于转录组学和代谢组学联合分析草珊瑚萜类化合物生物合成的组织特异性分布 [J]. 生物工程学报, 2024, 40(2): 542-561. |
| Wu D, Zhang YY, Lin N, et al. Tissue specific distribution of terpenoid biosynthesis in Sarcandra glabra based on transcriptome and metabolome analysis [J]. Chin J Biotechnol, 2024, 40(2): 542-561. | |
| [46] | 曾旭梅, 席婉, 朱琳琳, 等. 类胡萝卜素代谢途径基因变异导致园艺植物色泽差异的研究进展 [J]. 华中农业大学学报: 自然科学版, 2022, 41(3): 181-190. |
| Zeng XM, Xi W, Zhu LL, et al. Progress on studying color difference of horticultural plants caused by gene variation of carotenoid metabolic pathway [J]. J Huazhong Agric Univ Nat Sci Ed, 2022, 41(3): 181-190. | |
| [47] | 李松文, 孟凡亮, 刘丽红, 等. 番茄SlPSY1基因转录调控因子筛选及互作验证 [J]. 核农学报, 2023, 37(1): 8-16. |
| Li SW, Meng FL, Liu LH, et al. Screening and verification of transcription regulators interacted with SlPSY1 in tomato [J]. J Nucl Agric Sci, 2023, 37(1): 8-16. | |
| [48] | 郭文通, 余越, 王思月, 等. 基因沉默SlERF14促进番茄果实成熟 [J]. 中国生物化学与分子生物学报, 2023, 39(10): 1476-1486. |
| Guo WT, Yu Y, Wang SY, et al. Silencing SlERF14 promotes tomato fruit ripening [J]. Chin J Biochem Mol Biol, 2023, 39(10): 1476-1486. | |
| [49] | Toledo-Ortiz G, Johansson H, Lee KP, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription [J]. PLoS Genet, 2014, 10(6): e1004416. |
| [50] | Wang WH, Wang PW, Li XJ, et al. The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels [J]. Hortic Res, 2021, 8(1): 83. |
| [51] | 吴迪, 游小凤, 郑亦铮, 等. 草珊瑚中类胡萝卜素合成的内源激素调控机制分析 [J]. 生物技术通报, 2024, 40(5): 203-214. |
| Wu D, You XF, Zheng YZ, et al. Analysis of endogenous hormone regulation mechanism for carotenoid synthesis in Sarcandra glabra [J]. Biotechnol Bull, 2024, 40(5): 203-214. | |
| [52] | Wang NY, Sun YC, Lian R, et al. Genome-wide screening of AP2/ERF transcription factors involved in Citrus maxima ‘Sanhongmiyou’ exocarp coloring [J]. Sci Hortic, 2023, 318: 112041. |
| [53] | 陆晨飞, 高月霞, 黄河, 等. 植物类胡萝卜素代谢及调控研究进展 [J]. 园艺学报, 2022, 49(12): 2559-2578. |
| Lu CF, Gao YX, Huang H, et al. Carotenoid metabolism and regulation in plants [J]. Acta Hortic Sin, 2022, 49(12): 2559-2578. |
| [1] | 陈强, 于璎霏, 张颖, 张冲. 茉莉酸甲酯对薄皮甜瓜‘绿宝石’采后冷害的调控[J]. 生物技术通报, 2025, 41(9): 105-114. |
| [2] | 刘语诗, 李镇, 邹宇琛, 汤维维, 李彬. 药用植物空间代谢组学研究进展[J]. 生物技术通报, 2025, 41(9): 22-31. |
| [3] | 刘建国, 刘格儿, 郭颖欣, 王斌, 王玉昆, 卢金凤, 黄文庭, 朱云娜. 转录组和代谢组联合解析‘桂柚1号’和‘沙田柚’果实品质差异[J]. 生物技术通报, 2025, 41(9): 168-181. |
| [4] | 刘泽洲, 段乃彬, 岳丽昕, 王清华, 姚行浩, 高莉敏, 孔素萍. 大蒜叶片蜡质成分分析及蜡质缺失基因Ggl-1筛选[J]. 生物技术通报, 2025, 41(9): 219-231. |
| [5] | 闫梦阳, 梁晓阳, 戴君昂, 张妍, 关团, 张辉, 刘良波, 孙志华. 阿莫西林降解菌的筛选及降解机制研究[J]. 生物技术通报, 2025, 41(9): 314-325. |
| [6] | 张雅祺, 王芹芹, 沈夏, 李旭苗, 高敏, 李军, 李辰, 王慧. 食管鳞状细胞癌早期进展风险的代谢物预警模型[J]. 生物技术通报, 2025, 41(9): 335-344. |
| [7] | 王斌, 林冲, 袁晓, 蒋园园, 王玉昆, 肖艳辉. bHLH转录因子UNE10克隆及其在丁香罗勒挥发性化合物合成调控中的功能[J]. 生物技术通报, 2025, 41(9): 207-218. |
| [8] | 黄诗宇, 田姗姗, 杨天为, 高曼熔, 张尚文. 赤苍藤WRI1基因家族的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(8): 242-254. |
| [9] | 白雨果, 李婉迪, 梁建萍, 石志勇, 卢庚龙, 刘红军, 牛景萍. 哈茨木霉T9131对黄芪幼苗的促生机理[J]. 生物技术通报, 2025, 41(8): 175-185. |
| [10] | 李开杰, 吴瑶, 李丹丹. 红花CtbHLH128基因克隆及调控干旱胁迫应答功能研究[J]. 生物技术通报, 2025, 41(8): 234-241. |
| [11] | 曾丹, 黄园, 王健, 张艳, 刘庆霞, 谷荣辉, 孙庆文, 陈宏宇. 铁皮石斛bZIP转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(8): 197-210. |
| [12] | 柴军发, 洪波, 贾彦霞. 转录组和代谢组联合分析三株蜡蚧轮枝菌菌株毒力差异[J]. 生物技术通报, 2025, 41(8): 311-321. |
| [13] | 王月琛, 韩鑫骐, 魏文敏, 崔兆兰, 罗阳美, 陈鹏如, 王海岗, 刘龙龙, 张莉, 王纶. 黍稷落粒的生物学基础研究及落粒调控基因的鉴定[J]. 生物技术通报, 2025, 41(7): 164-171. |
| [14] | 蒋天威, 马培杰, 李亚娇, 陈才俊, 刘晓霞, 王小利. 二穗短柄草对光周期的代谢响应分析[J]. 生物技术通报, 2025, 41(7): 237-247. |
| [15] | 张越, 毕钰, 慕雪男, 郑子薇, 王志刚, 徐伟慧. 小麦赤霉病拮抗菌JB7的生防特性[J]. 生物技术通报, 2025, 41(7): 261-271. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||