[1] FAO(Food, Agriculture Organization of the United Nations). FAOproduction yearbook. FAO, Rome, 2004. [2] Ozturk ZN, Talame V, Deyholos M, et al. Monitoring large-scalechanges in transcript abundance in drought- and salt stressedbarley[J] . Plant Mol Biol, 2002, 48 :551-573. [3] Allen RD. Dissection of oxidative stress tolerance using transgenicplants[J] . Plant Physiol, 1995, 107 :1049-1054. [4] Vinocur B, Altman A. Recent advances in engineering plant toleranceto abiotic stress :achievements and limitations[J]. Curr Opin Biotechnol,2005, 16 :123-132. [5] Bray EA. Molecular responses to water deficit[J]. Plant Physiol,1993, 103 :1035-1040. [6] Holmstrom KO, Somersalo S, Mandal A, et al. Improved tolerance tosalinity and low temperature in transgenic tobacco producing glycinebetaine[J] . J Expt Bot, 2000, 51 :177-185. [7] Yamada M, Morishita H, Urano K, et al. Effects of free prolineaccumulation in petunias under drought stress[J]. J Exp Bot,2005, 56 :1975-1981. [8] Cortina C, Culianez-Macia F. Tomato abiotic stress enhancedtolerance by trehalose biosynthesis[J]. Plant Sci, 2005, 169 :75-82. [9] Capell T, Bassie L, Christou P. Modulation of the polyamine biosyntheticpathway in transgenic rice confers tolerance to drought stress[J] . Proc Natl Acad Sci USA, 2004, 101 :9909-9914. [10] Quimlo CA, Torrizo LB, Setter TL, et al. Enhancement ofsubmergence tolerance in transgenic rice plants overproducingpyruvate decarboxylase[J]. J Plant Physiol, 2000, 156 :516-521. [11] Diamant S, Eliahu N, Rosenthal D, et al. Chemical chaperonesregulate molecular chaperones in vitro and in cells under combinedsalt and heat stresses[J]. J Biol Chem, 2001, 276 :39586-39591. [12] Fukai S, Cooper M. Developing resistant cultivars using physiomorphologicaltraits in rice[J]. Field Crops Res, 1995, 40 :67-86. [13] Turner NC, Shahal A, Berger JD, et al. Osmotic adjustment inchickpea(Cicer arietinum L.)results in no yield benefit underterminal drought. J Exp Bot, 2007, 58 :187-194. [14] Vranova E, Inze D, Van Breusegem F. Signal transduction duringoxidative stress[J] . J Exp Bot, 2002, 53 :1227-1236. [15] Roxas VP, Smith RK Jr, Allen ER, et al. Overexpression ofglutathione S-transferase/glutathione peroxidase enhances thegrowth of transgenic tobacco seedlings during stress[J]. NatBiotechnol, 1997, 15 :988-991. [16] Gupta AS, Heinen JL, Holady AS, et al. Increased resistance tooxidative stress in transgenic plants that over-express chloroplasticCu/Zn superoxide dismutase[J]. Proc Nat Acad Sci USA, 1993,90 :1629-1633. [17] Perl A, Perl-Treves R, Galili S, et al. Enhanced oxidative stressdefense in transgenic potato expressing tomato Cu, Zn superoxidedismutases[J]. Theor Appl Genet, 1993, 85 :568-576. [18] Rubio MC, Gonzalez EM, Minchin FR, et al. Effects of water stresson antioxidant enzymes of leaves and nodules of transgenic alfalfaoverexpressing superoxide dismutases[J]. Physiol Plant, 2002,115 :531-540. [19] Mckersie BD, Bowley SR, Harjanto E, et al. Water deficit toleranceand field performance of transgenic alfalfa overexpressingsuperoxide dismutase[J]. Plant Physiol, 1996, 111 :1177-1181. [20] Oberschall A, Deak M, Torok K, et al. A novel aldose/aldehyde reductaseprotects transgenic plants against lipid peroxidation underchemical and drought stress[J]. Plant J, 2000, 24 :437-446. [21] Dure L III. A repeating 11-mer amino acid motif and plantdesiccation[J]. Plant J, 1993, 3 :363-369. [22] Xu D, Duan X, Wang B, et al. Expression of a late embryogenesisabundant protein gene, HVA1, from barley confers tolerance towater deficit and salt stress in transgenic rice[J]. Plant Physiol,1996, 110 :249-257. [23] Cheng WH, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acidbiosynthesis and functions[J]. Plant Cell, 2002, 14 :2723-2743. [24] Rohila JS, Jain RK, Wu R. Genetic improvement of Basmati rice forsalt and drought tolerance by regulated expression of a barley Hva1cDNA[J]. Plant Sci, 2002, 163 :525-532. [25] Bordas M, Montesinos C, Dabauza M, et al. Transfer of the yeastsalt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro2013年第1期23 刘春等:利用转基因途径提高植物非生物胁迫耐受性的研究进展evaluation of salt tolerance[J]. Transgenic Res, 1997, 5 :1-10. [26] Gisbert C, Rus AM, Bolarin MC, et al. The yeast HAL1 geneimproves salt tolerance of transgenic tomato[J]. Plant Physiol,2000, 123 :393-402. [27] Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plantsaccumulate salt in foliage but not in fruit[J]. Nat Biotechnol,2001, 19 :765-768. [28] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salttolerance gene SOS1 encodes a putative Na+/H+ antiporter[J].Proc Nat Acad Sci USA, 2000, 97 :6896-6901. [29] Murata N, Ishizaki-Nishizawa O, Higashi S, et al. Geneticallyengineered alteration in the chilling sensitivity of plants[J].Nature, 1992, 356 :710-713. [30] Murakami Y, Tsuyama M, Kobayashi Y, et al. Trienoic fatty acidsand plant tolerance of high temperature[J]. Science, 2000, 287 :476-479. [31] Waters ER, Lee GJ, Vierling E. Evolution, structure and function ofthe small heat shock proteins in plants[J]. J Exp Bot, 1996, 47 :325-338. [32] Vierling E. The roles of heat shock proteins in plants[J]. AnnuRev Plant Physiol Plant Mol Biol, 1991, 42 :579-620. [33] Katiyar-Agarwal S, Agarwal M, Grover A. Heat-tolerant basmatirice engineered by over-expression of hsp101[J]. Plant Mol Biol,2003, 51 :677-686. [34] Miroshnichenko S, Tripp J, Nieden UZ, et al. Immunomodulationof function of small heat shock proteins prevents their assemblyinto heat stress granules and results in cell death at sublethaltemperatures[J]. Plant J, 2005, 41 :269-281. [35] Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improvingsalt tolerance in plants[J]. Crop Sci, 2005, 45 :437-448. [36] 刘春, 麻浩. 拟南芥非生物胁迫应答基因表达的调节子研究概况[J]. 生物技术通讯, 2009, 20(2):273-278. [37] 郭晋艳, 郑晓瑜, 邹翠霞, 等. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[J]. 生物技术通报, 2011(4):16-20, 30. [38] 刘春, 曹丽敏, 陈冲, 等. 禾本科植物响应非生物胁迫的转录调控网络[J]. 生物技术通报, 2012(2):8-13. [39] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses todrought stress[M]. In: Shinozaki K, Yamaguchi-Shinozaki K(eds)Molecular responses to cold, drought, heat and salt stress in higherplants[J]. RG Landes Co., Austin, 1999. [40] 赵宝添, 张权, 张荃. 逆境下拟南芥ABA 信号途径负调控因子的研究进展. 西北植物学报, 2010, 30(4):855-860. [41] 张茂迎, 宗晓娟, 李德全. 植物MAPK 级联途径参与调控ABA 信号转导[J]. 生命科学, 2010, 22(8):736-742. [42] 张和臣, 尹伟伦, 夏新莉. 非生物逆境胁迫下植物钙信号转导的分子机制[J]. 植物学通报, 2007, 24(1):114-122. [43] Lee JH, van Montagu M, Verbruggen N. A highly conserved kinaseis an essential component for stress tolerance in yeast and plantcells[J]. Proc Natl Acad Sci USA, 1999, 96 :5873-5877. [44] Pardo JM, Reddy MP, Yang S. Stress signaling through Ca2+/Calmodulin dependent protein phosphatase calcineurin mediatessalt adaptation in plants[J]. Proc Natl Acad Sci USA, 1998, 95 :9681-9683. [45] Shou H, Bordallo P, Wang K. Expression of the Nicotiana proteinkinase(NPK1)enhanced drought tolerance in transgenic maize[J]. J Exp Bot, 2004, 55 :1013-1019. [46] Wang Y, Ying J, Kuzma M, et al. Molecular tailoring of farnesylationfor plant drought tolerance and yield protection[J]. Plant J,2005, 43 :413-424. [47] Pei ZM, Ghassemian M, Kwak CM, et al. Role of farnesyltransferasein ABA regulation of guard cell anion channels and plant waterloss[J]. Science, 1998, 282 :287-290. [48] Romero C, Belles JM, Vaya JL, et al. Expression of the yeasttrehalose-6-phosphate synthase gene in transgenic tobacco plants :pleiotropic phenotypes include drought tolerance[J]. Planta,1997, 201 :293-297. [49] Capell T, Escobar C, Lui H, et al. Overexpression of the oat argininedecarboxylase cDNA in transgenic rice(Oryza sativa L.)affectsnormal development patterns in vitro and results in putrescineaccumulation in transgenic plants[J]. Theor Appl Genet, 1998,97 :246-254. [50] Shinwari ZK. Function and regulation of genes that are induced bydehydration stress[J]. Biosci Agric, 1999, 5 :39-47. [51] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt,and freezing tolerance by gene transfer of a single stress inducibletranscription factor[J]. Nat Biotechnol, 1999, 17 :287-291. [52] Lee SS, Cho HS, Yoon GM, et al. Interaction of NtCDPK1 calciumdependentprotein kinase with NtRpn3 regulatory subunit of the26S proteasome in Nicotiana tabacum[J]. Plant J, 2003, 33 :生物技术通报 Biotechnology Bulletin 2013年第1期24825-840. [53] Katiyar-Agarwal S, Agarwal M, Grover A. Emerging trends inagricultural biotechnology research :use of abiotic stress inducedpromoter to drive expression of a stress resistance gene in thetransgenic system leads to high level stress tolerance associatedwith minimal negative effects on growth[J]. Curr Sci, 1999, 77 :1577-1579. [54] Garg AK, Kim JK, Owens TG, et al. Trehalose accumulationin rice plants confers high tolerance levels to different abioticstresses[J]. Proc Natl Acad Sci USA, 2002, 99 :15898-15903. [55] Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-inducedexpression in wheat of the Arabidopsis thaliana DREB1A genedelays water stress symptoms under greenhouse conditions[J].Genome, 2004, 47 :493-500. [56] Pilon-Smits EAH, Terry N, Sears T, et al. Enhanced droughtresistance in fructan-producing sugar beet[J]. Plant PhysiolBiochem, 1999, 37 :313-317. [57] Sivamani E, Bahieldin A, Wraith JM, et al. Improved biomassproductivity and water use efficiency under water deficit conditionsin transgenic wheat constitutively expressing the barley HVA1gene[J]. Plant Sci, 2000, 155 :1-9. [58] Sinclair TR, Ludlow MM. Influence of soil water supply on the plantwater balance of four tropical grain legumes[J]. Aust J PlantPhysiol, 1986, 3 :329-341. [59] Bhatnagar-Mathur P, Devi MJ, Serraj R, et al. Evaluation oftransgenic groundnut lines under water limited conditions[J]. IntArch Newsl, 2004, 24 :33-34. [60] Vadez V, Krishnamurthy L, Serraj R, et al. Large variation insalinity tolerance in chickpea is explained by differences insensitivity at the reproductive stage[J]. Field Crops Research,2007, 104 :123-129. |