[1] Deyholos MK. Making the most of drought and salinity transcriptomics[J]. Plant, Cell and Environ, 2010, 33(4):648-654. [2] Sahu BB, Shaw BP. Isolation, identification and expression analysisof salt-induced genes in Suaeda maritima, a natural halophyte usingPCR-based suppression subtractive hybridization[J]. BMC PlantBiol, 2009, 9 :69. [3] Jiang Y, Deyholos MK. Comprehensive transcriptional profiling ofNaCl-stressed Arabidopsis roots reveals novel classes of responsivegenes[J]. BMC Plant Biology, 2006, 6(1):25. [4] Udvardi MK, Kakar K, Wandrey M, et al. Legume transcriptionfactors :global regulators of plant development and response to theenvironment[J]. Plant Physiol, 2007, 144(2):538-549. [5] Gruber V, Blanchet S, Diet A, et al. Identification of transcriptionfactors involved in root apex responses to salt stress in Medicagotruncatula[J]. Mol Genet and Genomics, 2009, 281(1):55-66. [6] Miyama M, Tada Y. Transcriptional and physiological study of theresponse of Burma mangrove(Bruguiera gymnorhiza)to salt andosmotic stress[J]. Plant Mol Biol, 2008, 68(1-2):119-129. [7] Wang Y, Chu Y, Liu G, et al. Identification of expressed sequencetags in an alkali grass(Puccinellia tenuiflora)cDNA library[J].J Plant Physiol, 2007, 164(1):78-89. [8] Wang Y, Yang C, Liu G, et al. Microarray and suppression subtractivehybridization analyses of gene expression in Puccinellia tenuifloraafter exposure to NaHCO3[J]. Plant Sci, 2007, 173 :309-320. [9] Wang Y, Yang C, Liu G, et al. Development of a cDNA microarray toidentify gene expression of Puccinellia tenuiflora under saline-alkalistress[J]. Plant Physiol Biochem, 2007, 45(8):567-576. [10] Taji T, Seki M, Satou M, et al. Comparative genomics in salttolerance between Arabidopsis and Arabidopsis-related halophytesalt cress using Arabidopsis microarray[J]. Plant Physiol, 2004,135(3):1697-1709. [11] Yousfi S, Rabhi M, Hessini K, et al. Differences in efficientmetabolite management and nutrient metabolic regulation betweenwild and cultivated barley grown at high salinity[J]. Plant Biol(Stuttg), 2010, 12(4):650-658. [12] Kim DW, Shibato J, Agrawal GK, et al. Gene transcription in the leavesof rice undergoing salt-induced morphological changes(Oryzasativa L.)[J]. Mol Cells, 2007, 24(1):45-59. [13] Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the genefor Δ1-pyrroline-5-carboxylate synthetase and correlation betweenthe expression of the gene and salt tolerance in Oryza sativa L.[J].Plant Mol. Biol, 1997, 33(5):857-865. [14] Ben Hassine A, Ghanem ME, Bouzid S, et al. An inland and acoastal population of the Mediterranean xero-halophyte speciesAtriplex halimus L. differ in their ability to accumulate proline andglycinebetaine in response to salinity and water stress[J]. J ExpBot, 2008, 59(6):1315-1326. [15] Lutts S, Majerus V, Kinet JM. NaCl effects on proline metabolism inrice(Oryza sativa)seedlings[J]. Physiologia Plantarum, 1999,105(3):450-458. [16] Garcia AB, de Almeida Engler J, lyer S, et al. Effects of osmoprotectantsupon NaCl stress in rice[J]. Plant Physiol, 1997, 115(1):159-169. [17] Lutts S, Kinet JM, Bouharmont J. Effects of salt stress on growth,mineral nutrition and proline accumulation in relation to osmoticadjustment in rice(Oryza saliva L.)cultivars differing in salinityresistance[J]. Plant Growth Regul, 1996, 19(3):207-218. [18] Hur J, Jung KH, Lee CH, et al. Stress inducible OsP5CS2 gene isessential for salt and cold tolerance in rice[J]. Plant Sci, 2004,167 :417-426. [19] Avonce N, Leyman B, Mascorro-Gallardo JO, et al. The Arabidopsistrehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisicacid, and stress signaling[J]. Plant Physiol, 2004, 136(3):3649-3659. [20] Blumwald E, Aharon GS, Apse MP. Sodium transport in plantcells[J]. Biochim Biophys Acta, 2000, 1465(1-2):140-151. [21] Taji T, Komatsu K, Katori T, et al. Comparative genomic analysisof 1047 completely sequenced cDNAs from an Arabidopsis-relatedmodel halophyte, Thellungiella halophila[J]. BMC Plant Biol,2010, 10 :261. [22] Oh DH, Dassanayake M, Haas JS, et al. Genome structures andhalophyte-specific gene expression of the extremophile Thellungiellaparvula in comparison with Thellungiella salsuginea(Thellungiellahalophila)and Arabidopsis[J]. Plant Physiol, 2010, 154(3):1040-1052. [23] Shao Q, Zhao C, Han N, et al. Cloning and expression pattern ofSsHKT1 encoding a putative cation transporter from halophyteSuaeda salsa[J]. DNA Seq, 2008, 19(2):106-114. [24] Gao C, Wang Y, Liu G, et al. Expression profiling of salinity-alkali2013年第1期7 付畅等:盐生植物耐盐分子机制的研究进展stress responses by large-scale expressed sequence tag analysis inTamarix hispid. Plant Mol Biol, 2008, 66(3):245-258. [25] Ghars MA, Parre E, Debez A, et al. Comparative salt toleranceanalysis between Arabidopsis thaliana and Thellungiellahalophila, with special emphasis on K+/Na+ selectivity and prolineaccumulation[J]. J Plant Physiol, 2008, 165(6):588-599. [26] Yang MF, Song J, Wang BS. Organ-specific responses of vacuolarH-ATPase in the shoots and roots of C3 halophyte Suaeda salsa toNaCl[J]. J Integr Plant Biol, 2010, 52(3):308-314. [27] Wang CM, Zhang JL, Liu XS, et al. Puccinellia tenuiflora maintainsa low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant CellEnviron, 2009, 32(5):486-496. [28] Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular andmolecular responses to high salinity[J]. Annu Rev Plant PhysiolPlant Mol Biol, 2000, 51 :463-469. [29] Stepien P, Johnson GN. Contrasting responses of photosynthesisto salt stress in the glycophyte Arabidopsis and the halophytethellungiella :role of the plastid terminal oxidase as an alternativeelectron sink[J]. Plant Physiol, 2009, 149(2):1154-1165. [30] Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, et al. Saltstimulation of growth and photosynthesis in an extreme halophyte,Arthrocnemum macrostachyum[J]. Plant Biol(Stuttg), 2010,12(1):79-87. [31] Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, et al. Growth andphotosynthetic responses to salinity of the salt-marsh shrub Atriplexportulacoides[J].Ann Bot, 2007, 100(3):555-563. [32] Lugan R, Niogret MF, Leport L, et al. Metabolome and waterhomeostasis analysis of Thellungiella salsuginea suggests thatdehydration tolerance is a key response to osmotic stress in thishalophyte[J]. Plant J, 2010, 64(2):215-229. [33] Megdiche W, Passaquet C, Zourrig W, et al. Molecular cloning andcharacterization of novel cystatin gene in leaves Cakile maritimahalophyte[J]. J Plant Physiol, 2009, 166(7):739-749. [34] Martin W, Brinkmann H, Savonna C, et al. Evidence for a chimericnature of nuclear genomes :eubacterial origin of eukaryoticglyceraldehyde-3-phosphate dehydrogenase genes[J]. Proc NatlAcad Sci USA, 1993, 90(18):8692-8696. [35] 张国栋. 抑制性消减杂交和cDNA 微阵列技术研究星星草耐盐机理[D]. 哈尔滨:东北林业大学, 2006 :29-60. [36] 石永丽. 星星草(Puccinellia teniflora)响应Na2CO3 胁迫差异表达蛋白质组学研究[D]. 哈尔滨:哈尔滨师范大学,2009 :19-34. [37] Sheen J, Zhou L, Jang JC. Sugar as signaling molecules[J]. CurrOpin Plant Biol, 1999, 2(5):410-418. [38] Gibson SI. Plant sugar-response pathways. Part of a complexregulatory web[J]. Plant Physiol, 2000, 124(4):1532-1539. |