[1] Marians KJ. Prokaryotic DNA replication[J]. Annual Review of Biochemistry, 1992, 61:673-719. [2] Wickner S, Hurwitz J. Interaction of Escherichia coli dnaB and dnaC(D)gene products in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72:921-925. [3] Frick DN, Richardson CC. DNA primases[J]. Annual Reviw of Biochemistry, 2001, 70:39-80. [4] Patel SS, Picha KM. Structure and function of hexameric helicases[J]. Annual Review of Biochemistry, 2000, 69:651-697. [5] Oakley AJ, Loscha KV, Schaeffer PM, et al. Crystal and solution structures of the helicase-binding domain of Escherichia coli primase[J]. The Journal of Biological Chemistry, 2005, 280:11495-11504. [6] Syson K, Thirlway J. Hounslow AM, et al. Solution structure of the helicase-interaction domain of the primase DnaG:a model for helicase activation[J]. Structure, 2005, 13:609-616. [7] Thirlway J, Turner IJ, Gibson CT, et al. DnaG interacts with a linker region that joins the N- and C-terminal domains of DnaB and induces the formation of 3-fold symmetric rings[J]. Nucleic Acids Research, 2004, 32:2977-2986. [8] Soultanas P. The bacterial helicase(DnaB)-primase(DnaG)interaction:a common structural/functional module[J]. Structure, 2005, 13:839-844. [9] Fang L, Davey MJ, O’Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin[J]. Molecular Cell, 1999, 4:541-553. [10] Mitkova AV, Khopde SM, Biswas SB. Mechanism and stoichiometry of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis[J]. The Journal of Biological Chemistry, 2003, 278:52253-52261. [11] Chang P, Marians KJ. Identification of a region of Escherichia coli DnaB required for functional interaction with DnaG at the replication fork[J]. The Journal of Biological Chemistry, 2000, 275:26187-26195. [12] Maurer R, Wong A. Dominant-lethal mutations in the dnaB helicase gene of Salmonella typhimurium[J]. Journal of Bacteriology, 1988, 170:3682-3688. [13] Stordal L, Maurer R. Defect in general priming conferred by linker region mutants of Escherichia coli DnaB[J]. Journal of Bacteriology, 1996, 178:4620-4627. [14] Goulian M, Hanaualt PC. DNA Sythesis and its regulation[M]. CA:Benjamin. ICN Parmaceuticals. Universit5y of Carlifornia, Los Angeles, 1975:241-269. [15] Arai N, Kornberg A. Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA[J]. The Journal of Biological Chemistry, 1981, 256:5294-5298. [16] Huber HE, Tabor S, Richardson CC. Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates[J]. The Journal of Biological Chemistry, 1987, 262:16224-16232. [17] Tabor S, Huber HE, Richardson CC. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7[J]. The Journal of Biological Chemistry, 1987, 262:16212-16223. [18] Tabor S, Richardson CC. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78:205-209. [19] Kolodner R, Richardson CC. Replication of duplex DNA by bacteriophage T7 DNA polymerase and gene 4 protein is accompanied by hydrolysis of nucleoside 5’-triphosphates[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74:1525-529. [20] Kim YT, Tabor S, Bortner C, et al. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein[J]. The Journal of Biological Chemistry, 1992, 267:15022-15031. [21] Kim YT, Tabor S, Churchich JE, et al. Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7[J]. The Journal of Biological Chemistry, 1992, 267:15032-15040. [22] Ilyina TV, Gorabalenya AE, Koonin EV. Organization and evolution of bacterial and bacteriophage primase-helicase systems[J]. Journal of Molecular Evolution, 1992, 34:351-357. [23] Egelman EH, Yu X, Wild R, et al. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:3869-3873. [24] Kim YT, Richardson CC. Bacteriophage T7 gene 2.5 protein:an essential protein for DNA replication[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:10173-10177. [25] Kim YT, Richardson CC. Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions[J]. The Journal of Biological Chemistry, 1994, 269:5270-5278. [26] Fujiyama A, Kohara Y, Okazaki T. Initiation sites for discontinuous DNA synthesis of bacteriophage T7[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78:903-907. [27] Nakai H, Richardson CC. Leading and lagging strand synthesis at the replication fork of bacteriophage T7. Distinct properties of T7 gene 4 protein as a helicase and primase[J]. The Journal of Biological Chemistry, 1988, 263:9818-9830. [28] Kusakabe T, Baradaran K, Lee J, et al. Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site[J]. EMBO Journal, 1998, 17:1542-1552. [29] Frick DN, Richardson CC. Interaction of bacteriophage T7 gene 4 primase with its template recognition site[J]. The Journal of Biological Chemistry, 1999, 274:35889-35898. [30] Ahnert P, Patel SS. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5’- and 3’-tails of the forked DNA substrate[J]. The Journal of Biological Chemistry, 1998, 272:32267-32273. [31] Hacker KJ, Johnson KA. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding[J]. Biochemistry, 1997, 36:14080-14087. [32] Yang S, Yu X, VanLoock MS, et al. Flexibility of the rings:structural asymmetry in the DnaB hexameric helicase[J]. Journal of Molecular Biology, 2002, 321:839-849. [33] Nunez-Ramirez R, Robledo Y, Mesa P, et al. Quaternary polymorphism of replicative helicase G40P:structural mapping and domain rearrangement[J]. Journal of Molecular Biology, 2006, 357:1063-1076. [34] Jezewska MJ, Rajendran S, Bujalowski D, Bujalowski W. Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB helicase? fluorescence energy transfer studies[J]. The Journal of Biological Chemistry, 1998, 273:10515-10529. [35] Kaplan DL. The 3’-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase[J]. Journal of Molecular Biology, 2000, 301:285-299. [36] Bailey S, Eliason WK, Steitz TA. The crystal structure of the Thermus aquaticus DnaB helicase monomer[J]. Nucleic Acids Research, 2007, 35:4728-4736. [37] Nakayama N, Arai N, Kaziro Y, et al. Structural and functional stu-dies of the dnaB protein using limited proteolysis. Characterization of domains for DNA-dependent ATP hydrolysis and for protein association in the primosome[J]. The Journal of Biological Chemistry, 1984, 259:88-96. [38] Bird LE, Pan H, Soultanas P, et al. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus[J]. Biochemistry, 2000, 39:171-182. [39] Mesa P, Alonso JC, Ayora S. Bacillus subtilis bacteriophage SPP1 G40P helicase lacking the n-terminal domain unwinds DNA bidirectionally[J]. Journal of Molecular Biology, 2006, 357:1077-1088. [40] Materials and methods are available as supporting material on Science Online. [41] Biswas SB, Chen PH, Biswas EE. Structure and function of Escherichia coli DnaB protein:role of the N-terminal domain in helicase activity[J]. Biochemistry, 1994, 33:11307-11314. [42] Johnson SK, Bhattacharyya S, Griep MA. DnaB helicasestimulates primer synthesis activity on short oligonucleotide templates[J]. Biochemistry, 2000, 39:736-744. [43] Corn JE, Pease PJ, Hura GL, et al. Crosstalk between primase subunits can act to regulate primer synthesis in trans[J]. Molecular Cell, 2005, 20:391-401. |